Aalto University

School of Science and Technology

Faculty of Information and Natural Sciences

Degree programme of Computer Science and Engineering

Pekka Silvekoski

Client-side migration of authentication session

Master’s Thesis
Espoo, February 14, 2010

Supervisor: Professor Tuomas Aura, Aalto University
Instructors: Sanna Suoranta Lic.Sc.(Tech.), Jani Heikkinen M.Sc.(Tech.), Aal-
to University

Aalto University

School of Science and Technology ABSTRACT OF
Faculty of Information and Natural Sciences MASTER’S THESIS
Degree Programme of Computer Science and Engineering

Author: Pekka Silvekoski

Title of thesis:
Client-side migration of authentication session

Date: February 14, 2010 Pages: 10 + 71
Professorship: Data Communications Software Code: T-110
Supervisor: Professor Tuomas Aura

Instructors: Sanna Suoranta Lic.Sc.(Tech.), Jani Heikkinen M.Sc.(Tech.)

The internet has changed to a more mobile environment where users al-
ternate between desktop and mobile devices. The sessions the user starts
on one device do not automatically move to a new device when the user
changes to it. Session migration allows the user to move the sessions with
him.

This thesis concentrates on the migration of authentication sessions. Web-
based authentication services create an authentication session with the
user that is used to re-authenticate the user when he moves on the internet.
Migrating the authentication session with the user removes the need for
the user to log in again on every service in the new device.

The focus of this thesis is studying single sign-on (SSO) authentication
systems and their session handling. Implementation is a prototype ap-
plication that migrates authentication sessions of different SSO systems.
Furthermore, this thesis discusses what needs to be changed on the client
and server-sides of the transfer for the migration to work smoothly.

Migration of internet sessions is a studied topic. The whole internet ses-
sion from a browser has been migrated with different means. This thesis
focuses only on a one part of the internet session namely the authentica-
tion sessions. When only the authentication session is migrated, the other
sessions do not interfere with the studying of the authentication session
migration.

Keywords: authentication, session, SSO, mobility, identity,
migration
Language: English

i

Aalto-yliopisto

Teknillinen korkeakoulu DIPLOMITYON
Informaatio- ja luonnontieteiden tiedekunta TIIVISTELMA
Tietotekniikan koulutusohjelma

Tekija: Pekka Silvekoski
Ty6n nimi:
Client-side migration of authentication session

Piivays: 14. helmikuuta 2010 Sivumadira: 10 + 71
Professuuri: Tietoliikenneohjelmistot Koodi: T-110

Ty6n valvoja: Professori Tuomas Aura
Ty6n ohjaajat: Tekniikan lisensiaatti Sanna Suoranta,
Diplomi-insin6ori Jani Heikkinen

Internet on muuttunut yha liikkkuvammaksi ympéaristoksi. Kéyttajiat vaih-
tavat poytikoneiden ja mobiililaitteiden valilla. Kayttajan yhdella laitteel-
la aloittamat sessiot eivit siirry uudelle laitteelle, kun kiyttiji vaihtaa sil-
le. Istunnon siirtdmisen avulla kiyttdjan istunnot voivat siirtyéd kiyttajan
mukana.

Taméa opinndyte keskittyy autentikointi-istuntojen siirtoon. Web-
pohjaiset autentikointipalvelut luovat kayttdjan kanssa autentikointi-
istunnon, jolla kiyttdja autentikoidaan, kun héin kiyttdd Internetii.
Autentikointi-istunnon siirto mahdollistaa kiyttajalle laitteen vaihdon il-
man, ettd hinen taytyy kirjautua uudelleen jokaiseen palveluun.

Téssa diplomityossa tutkitaa kertakirjautumisjarjestelmia ja miten ne ka-
sittelevit istuntojaan. Toteutuksena on prototyyppi, joka siirtdd useam-
man kertakirjautumisjirjestelméin autentikointi-istuntoja laitteelta toisel-
le. Tutkinnan kohteena on myss miten asiakaspddtd ja palvelinpdita
autentikointi-istunnossa on muutettava, jotta autentikointi-istunnon siirto
toimii saumattomasti.

Internet-istunnon siirtdmistad on tutkittu paljon. Eri tapoja on kiytetti
koko web-selaimen istunnon siirrossa. Téssd tyossd keskitytddn vain yh-
teen Internet-istunnon osaan, nimittain autentikointi-istuntoon. Kun siir-
retddn pelkistdin autentikointi-istunto, muut Internet-istunnot eivit héi-
ritse autentikointi-istunnon siirron tutkimista.

Avainsanat: autentikaatio, kertakirjautuminen, identiteetti, migraatio,
mobiilisuus, sessio
Kieli: englanti

iii

Acknowledgements

First, I would like to thank my supervisor prof. Tuomas Aura, and instruc-
tors Lic.Sc.(Tech.) Sanna Suoranta and M.Sc.(Tech.) Jani Heikkinen. The
instructors helped me a lot with the topic of the thesis and our weekly meet-
ings helped me to finish the thesis in timely fashion. They also allowed me
to loan equipment for development and testing of the implementation in this
thesis.

I also want to thank my family and friends. Niko Laaksonen for proof reading
most of the text and providing useful tips with English language, my sister
D.Sc.(Tech.) Maija Honkela for reading the thesis and providing useful advice
and of course my mother for pretty much everything.

Espoo January 16th 2010

Pekka Silvekoski

iv

Abbreviations and Acronyms

AS
GTK-+
GUI
IdP
OBEX
QoS
RFCOMM
SAML
SDK
SGT
SP
SPP
SSO
TGS
TGT
WEP
WLAN
WPA

Authentication Server

GIMP Toolkit

Graphical User Interface

Identity Provider

Object Exchange

Quality of Service

Radio Frequency Communication
Security Assertion Markup Language
Software Developers Kit

Service Granting Ticket

Service Provider

Serial Port Profile

Single Sign-on

Ticket Granting Service

Ticket Granting Ticket

Wired Equivalent Privacy
Wireless Local Area Network
Wi-Fi Protected Access

Contents

Abbreviations and Acronyms

1

3

Introduction
1.1 Use case scenario o v v v i e
1.2 Problem statement

1.3 Organisation of the thesis

Single sign-on

2.1 Centralised approach
2.1.1 Kerberoso

2.2 Distributed approacho 0oL
221 OpenlD

2.3 Federated approach
2.3.1 Shibboleth oL oo
2.3.2 Identifying cookies of Shibboleth

2.4 Other categorisations for SSO systems

Environment
3.1 Session Mobility
3.2 Cookies

3.2.1 Cookies in different operating systems
3.2.2 Browsers and cookies on mobile platforms

3.3 Cookies on single sign-on systems

vi

10
12
13

3.4 Cookies and securityo
3.4.1 Cookies vs. certificates
3.5 Replay attacks oo o
3.5.1 Protecting against replay attacks
3.6 Transport Layer Security (TLS)
3.7 Transfer method L.
3.7.1 Bluetooth
3.7.2 Wireless local area network (WLAN)
3.7.3 Internet
3.7.4 Comparison of the transfer methods
Design
4.1 Cookie extraction and importation
4.1.1 Cookiedata
4.2 Datatransfer oo
4.3 Evaluation criteriao oL
Implementation
5.1 Devices
5.1.1 Cookie extraction
5.2 Cookie transfero
5.2.1 Bluetoothclient
5.2.2 Bluetooth server
5.3 Experiments
5.3.1 OpenlD oo
5.3.2 Shibboleth o000
Evaluation
6.1 Evaluation against the criteria
6.2 Implementation problems.
6.2.1 Programming language

vii

32
34
34
35
36

38
39
39
44
45
46
46
47
48

6.2.2 Symbian o
6.2.3 Fennec

6.3 Selfevaluation

Discussion

7.1 Session transfer solutions

7.2 ldentifying the session cookies

7.3 Identifying the IdP the user wants touse

7.4 Distinguishing transferred session from a replay attack

7.5 Migrating the whole internet session

7.6 Browsers and extensions with cookie handling

7.7 From prototype to real application

Conclusions

8.1 Further work

viil

57
o8
60
60

62
62
63

65

List of Tables

2.1 Comparison of the three different SSO system approaches . . .

3.1 Comparison of cookie handling on different browsers

5.1 The devices chosen for the implementation

ix

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2

4.1
4.2

5.1
0.2

2.3
5.4

Kerberos SSO system data flow 7
OpenID SSO system dataflow 8
Example of a Shibboleths SSO authentication procedure . . . 10
Cookies Shibboleth uses for session handling 12
Control flow of centralised cookie server approach 21
Control flow of centralised login server approach 23
Example of a cookie transfer 33
Example of the cookie file contents 35
XPCOM components of the extension implementation 40
Interaction of the cookie extraction extension with the Blue-

tooth client 43
Bluetooth client and server interaction 49
The migration target choice dialog 50

Chapter 1

Introduction

On computers, user usually starts his first session by turning on his computer
or logging into a workstation. When user starts different programs, all of
them have their own sessions and session information. The sessions change
during the user’s work. If a user changes from one device to another, all
these sessions have to be started from the beginning.

Sessions are especially important in the internet. The web services create
sessions with users to identify the individual user’s connections from other
HTTP connections. The web servers keep track of the sessions with the state
management protocol of HT'TP that uses cookies to store information on the
user’s machine. If the web service wants to give protected information to the
user, it needs to confirm the user’s identity. The user’s identity authentication
is usually done with a separate authentication service such as a single sign-on
(SSO) system. The SSOs have their own sessions with users just as other
web services.

Session migration allows the user to continue his sessions on a different ma-
chine. Session migration is a studied topic. For example, Internet browser
[10] and multimedia sessions [31] have been migrated. The session migration
applications transfer the session information from one device to another. The
migration allows internet browsing or a multimedia session to continue from
the same spot on different devices in a mobile environment. For example, a
user can start to watch a movie from the internet on his mobile device while
travelling on a train. When the user arrives at home, he transfers the movie
session to his home entertainment system that is connected to the internet
and the movie continues from the same spot it was left off on the mobile
device.

Multitude of different single sign-on (SSO) systems exist that offer authenti-

CHAPTER 1. INTRODUCTION

cation services on the internet. SSO allows the user to authenticate himself
to different services with one login. The SSO systems have different ways
for user authentication and identity information storage and passing the in-
formation between the actors of the authentication system. Different levels
of authentication are used depending on the security requirements of the
accessed resources.

One goal of the SSO systems is to increase the usability of authentication
sessions for the user by diminishing the amount of logins users have to do.
Being able to migrate the authentication sessions of the SSO systems adds
even more usability. Eventually, the authentication sessions and thus identity
information moves with the user from one device to another without users
having to logout and login on every device for every service.

1.1 Use case scenario

Alice works in a company that has several different services accessible through
the web with a web browser. She is also enrolled in the local university which
also has many web services. Both the workplace and the university have their
own single sign-on (SSO) systems. With the SSO systems Alice only has to
remember one user name and password for the workplace and one for the
university to use all of their services.

In the morning, Alice is drinking her coffee at home and she is logged on to
the SSOs of her workplace and university. It is autumn and new semester in
school is beginning. She is checking timetables of her courses and comparing
them to her work calendar to prevent work and studies from overlapping
too much. Alice notices that some changes need to be done to her work
calendar but she needs to catch the next bus to work or she will be late from
an important meeting. To continue the synchronisation of the timetables,
Alice transfers her SSO sessions from the home computer to her pocket PC.
This way, Alice can continue her session on the bus without having to re-
authenticate herself and setting everything up again from the start.

Eve is in the same bus as Alice. She notices that Alice is using her calendar
on the mobile device. Eve wants to know if Alice has a date planned with
Bob and decides to capture Alice’s SSO authentication session to access her
calendar. Eve has her own mobile device with her. She alters her homepage
URL to look similar to university’s calendar applications URL. She sends this
altered URL to Alice with the schools instant messaging system and tells her
to check a funny picture she has drawn. Alice checks the picture and at the

CHAPTER 1. INTRODUCTION

same time a weakness in her browser makes it think the modified URL is the
calendar application of the university and sends the SSO session cookies to
it. Though to Eve’s surprise, the SSO system can differentiate between her
replay attack cookies and Alice’s legally transfered cookies and she cannot
pretend to be Alice.

After the bus ride Alice arrives at her workplace and transfers the SSO ses-
sions from her pocket PC to her work computer. She quickly checks the
system of the workplace for new messages about the meeting without having
to re-authenticate because she still has her original session from home open
and with her. Alice notices nothing new and goes to her meeting.

1.2 Problem statement

As the use case scenario states, one user can have multiple sessions on dif-
ferent SSO systems simultaneously. The sessions are tied to the devices they
were started on. If the user changes to a new device, he has to re-authenticate
himself to the SSO systems. This can be tedious especially on mobile devices.

Migrating the authentication sessions of the SSO systems with the user re-
moves the need for re-authentication. The authentication is meant to identify
the user and not the device that is used. The identity information given to
the service has the user’s information. The identifier that tells which au-
thentication session belongs to the user is stored in the client-side of the SSO
system. Thus, the migration is possible to do with minimum changes to the
server-side. The client-side transfer allows the migration of different kinds of
SSO systems simultaneously without actions in the server-side.

To be able to migrate the authentication session, we must find out how the
SSO systems store the authentication session in the client machine, how this
session can be distinguished from the other sessions stored in the device,
how this session information can be extracted from the original device and
imported to the target device, and how the information can be transferred
between the devices participating in the migration. The devices and infor-
mation passing between them are assumed to be secure in this study.

1.3 Organisation of the thesis

This thesis consists of eight chapters: Introduction, SSO, Environment, De-
sign, Implementation, Evaluation, Discussion, and Conclusions. SSO chapter

CHAPTER 1. INTRODUCTION

tells about the different approaches to the single sign-on designs. Also, some
example SSO systems are described. Environment describes the central tech-
nologies concerning the SSO systems and the transfer methods needed for
the authentication session migration.

Design chapter outlines the plans for the implementation of the authenti-
cation session migration application prototype done in this thesis. It also
contains criteria for the evaluation of the implementation. Implementation
chapter has the description of the implementation of the authentication mi-
gration prototype. The end of the chapter includes also the findings of the
experiments done with the prototype.

The evaluation against the criteria presented in the Design chapter is in the
Evaluation chapter which also tells about the problems encountered during
the implementation and our own evaluation on how well the implementa-
tion fills our expectations. Discussion chapter discusses a variety of topics
that surfaced during the research and implementation phases of this thesis.
Conclusions chapter presents the final conclusion of this thesis.

Chapter 2
Single sign-on

Expanding internet offers more and more possibilities for different services
to exist. Many of these services require user authentication. Different single
sign-on (SSO) systems simplify these authentication processes from the user’s
point of view. The SSO systems provide access to multiple services with one
login, and they offer benefits from both the point of view of usability and
security.

e Usability: Only one login is needed for several services.

e Usability: Organisations can use authentication services outside their
own systems when a trust relationship exists. The organisations that
trust each other form federations.

e Usability/security: User has fewer user names and passwords to re-
member. This diminishes the chance that user writes the user names
and passwords down.

e Security: People tend to use the same password in many services and
when this password is compromised changes have to be done in all
services. SSO needs the password change only once for all the services.

e Security: SSO helps to implement and keep the security policy of the
company in effect [24].

The SSO systems are usually be divided into two interacting parts: identity
provider (IdP), and service provider (SP). IdP handles the user authenti-
cation and grants an access ticket. The access ticket contains the identity

CHAPTER 2. SINGLE SIGN-ON

information of the authenticated user. The SP uses this information to de-
cide what resources in its service belong to the user. If the user has not been
granted an access ticket, when he tries to access a protected resource, the
SP directs the user to the IdP for authentication. The IdP gives the access
ticket to the user to pass to the SP or the IdP gives it directly to the SP.

The SSO systems have evolved from being centralised to decentralised and
finally into federated systems. Some implementations have been created to
be centralised and later updated to the more modern versions as time has
passed. The next sections describe these approaches and give examples of
the systems created to implement them. Also, table 2.1 shows a comparison
between the three approaches.

SSO approach | Number of | Placement of | Trust relation-
1dPs IdPs ships

Centralised one inside own organ- | not needed
isation

Distributed more than one inside own organ- | not needed
isation

Federated more than one inside and out- | needed between
side own organi- | organisations
sation

Table 2.1: Comparison of the three different SSO system approaches

2.1 Centralised approach

The centralised approach stores the identity information in a central location.
The central user identities can be accessed through a single server or multiple
servers. The identity information can also be copied to several databases but
in this case some method of synchronisation is used to keep the different
databases identical. Both the SPs and the centralised IdP are maintained by
the same organisation. Thus, the SPs and IdP are trusted at all times.

2.1.1 Kerberos

Kerberos is one of the oldest SSO system implementations. It is defined in
Internet Engineering Task Forces RFC 4120 [33]. RFC 4120 calls Kerberos

CHAPTER 2. SINGLE SIGN-ON

a network authentication system but it can be regarded as a single sign-on
system since it provides access into several resources with only one login.
The original Kerberos is a centralised SSO system as it uses a central server
to give the tickets to users but it can be extended to work as a federated SSO
system [18].

Kerberos is a token-based authentication system. It consists of three different
parts: an authentication server, a ticket granting server, and the SPs that
provide the services the users want to access. The authentication server
(AS) and the ticket granting server (TGS) can be thought to form a single
IdP. Kerberos uses symmetric cryptography to encrypt the tokens. The AS
and the different SPs share a secret that is used to encrypt and decrypt the
tokens.

TGS
o LU
.User gets 3. User
. User gets
= the TGT access to the
User service with the SP
S5GT ——
—
AS
— 2. User uses the

TGT to get SGT

Figure 2.1: Kerberos SSO system data flow

Figure 2.1 shows how the access tickets are passed around in the Kerberos
system. First, the user has to authenticate himself with the TGS to get a
ticket granting ticket (TGT). If the user has a TGT, AS gives user a service
granting ticket (SGT) with the users identity credentials. The SGT is used
to authenticate the user with all the SPs. If the user already has a valid
service granting ticket from the TGS, he does not have to re-authenticate
himself. This makes Kerberos a SSO system. Both TGS and SGT contain
information about the user’s network address. This prevents a replay attack
from a different network address with the captured tickets.

CHAPTER 2. SINGLE SIGN-ON

2.2 Distributed approach

The distributed system has more than one identity provider (IdP). The dif-
ferent IdPs have different user identity databases. The user has to have his
identity authenticated only on one of the IdPs to gain access to the services
the SPs provide. User usually has the choice which IdP to use for the authen-
tication. All the IdP servers are under the control of the same organisation.
Therefore, the servers are regarded as trusted in all cases.

2.2.1 OpenlID

OpenlD [5] is designed as a federated SSO system. It is mostly used by com-
mercial web services. The commercial services have been slow to adapt trust
relationships with each other. Thus, many of the them use the OpenID sys-
tem only within their own organisation. In this case, OpenID can be regarded
as an example of a distributed system because it has no trust relationships
with IdPs outside its own organisation.

Client

)

1 icc)ll:lrt:i]f]i)er 3. Authentication
2. Redirect +
authentication
— request —
— —
SP IdP

4. Authentication approved
assertion

Figure 2.2: OpenID SSO system data flow

Figure 2.2 shows the data flow of an authentication in OpenID. OpenID user
has an OpenID identifier which he uses for the login. With the identifier,
the SP finds out which IdP to contact for the authentication. The SP then

CHAPTER 2. SINGLE SIGN-ON

redirects the user to the chosen IdP with an authentication request. IdP
checks if the user is allowed to be authenticated in the server. The server
authenticates the user and redirects the user back to the SP with an authen-
tication approved assertion or authentication failed message. The approved
assertion contains the user identity information. The SP checks the validity
of the identity information. If the information is valid, the SP gives the user
access to the resource.

OpenlID allows flexibility for the SPs. OpenID does not force the SPs to store
the authentication session identifier on the client-side separate from the other
web session information. Therefore, it is possible that the authentication
session migration cannot be done on an OpenlD SP without transferring
also other session information.

The OpenlID IdPs have no default name for the authentication session cookie.
Newer version usually use a combination of name of the IdP and openid
tags, for example, “ exampleidp openid”. The OpenID IdP authentication
session has no protection against replay attacks that use captured session
cookies. The SP side may have protection depending on the implementation
of the SP side. Livejournal, for example, offers the users option to force
the server to accept the Livejournal session cookies only from the current IP
address of the user.

2.3 Federated approach

Federated systems have more than one authentication server. These servers
are situated in several organisations. The organisations accepting authenti-
cations from outside their own systems must have trust relationships. The or-
ganisations cannot accept identities provided by untrusted IdPs. The choice
of which of the trusted IdP servers to use is usually given to the user. The IdP
and the SP decide what information about the user’s identity is passed to the
application requiring the authentication. IdP chooses authentication method
depending on how strong authentication the accessed resource demands.

The organisations form the trust relationships with business contracts which
define how the identities and identity providers are used between the organ-
isations. A circle of trust emerges between the organisations. One organisa-
tion can trust the trusted partners of the other organisation after it forms a
trust relationship with it. [47]

CHAPTER 2. SINGLE SIGN-ON

2.3.1 Shibboleth

Shibboleth [8] is a open source federated single sign-on system developed
by the Internet2 Middleware Initiative. Shibboleth uses security assertion
markup language (SAML) to pass authentication and identity information
between the IdP and SP servers. Figure 2.3 shows an example of a Shibboleth
authentication.

==\

User client
1. Client access + 2 IdP extracts 3. J’ILuthcntlcatlon +
Redirect to IdP the SAML 2.0 redu'e.ct back to
with SAML AuthnRequest SP with SAML
2.0 AuthnRequest 2.0 assertion
4, SAML 2.0
Assertion
validation
[1 L 1
SP IdP

Figure 2.3: Example of a Shibboleths SSO authentication procedure

1. User accesses protected resource on a web server. Shibboleth’s SP
notices this and asks with a list which server user wants to use for
authentication. Before redirecting the user to the IdP, SP stores a
SAML 2.0 AuthnRequest in the browser.

2. When the client contacts the chosen IdP, the IdP extracts the authen-
tication request from the browser. With the authentication request,
the IdP knows how to authenticate the user and redirects the user to a
login page. If the user already has an authentication session with the
IdP, login is not needed.

10

CHAPTER 2. SINGLE SIGN-ON

3. User authenticates himself to the IdP by giving a user name and pass-
word for the SSO service. After the user has been authenticated, the
IdP collects information it has in store about the user. This informa-
tion is filtered to make sure that only relevant information is revealed
to the service. The information is modified to fit in a SAML 2.0 asser-
tion. This assertion is encrypted, signed, and stored in the client. The
user is redirected back to the SP with the assertion.

4. When the client contacts the SP again, the SP extracts the assertion
from the client. The SP performs the needed security checks to know
the validity of the assertion. The SP extracts the information from
the assertion and passes the information to the protected service in
an understandable form. After this, the service can use the identity
information given by the Shibboleth to grant the user access to the
service.

Shibboleth uses cookies for session management. When client accesses the
Shibboleth system, it first sends the cookies that belong to the system. These
cookies contain the session information corresponding to the user’s session
stored in the Shibboleth system. Transferring these cookies transfers the
session.

SP side of Shibboleth has protection against replay attacks that use captured
session cookies. Two attributes control the protection by checking the user’s
IP address: CheckAddress, and ConsistentAddress [27]. By default, these

are set as true in version 2.0 of Shibboleth.

CheckAddress makes sure that the client connects to the SP and the IdP from
the same IP address. Purpose of CheckAddress is to prevent attackers from
capturing the connection during redirects but the attribute is recommended
to be set as false because solutions like NAT might make the client use
different IP addresses on different networks. It is possible with Shibboleth
that the SP and the IdP are in different networks.

Client has a separate authentication session with both the SP and the IdP.
ConsistentAddress protects only the sessions with SPs. ConsistentAddress
checks that the client sends the cookies to the SP always from the same TP
address. If the TP changes, the SP rejects the session cookies and redirects
the client back to the IdP for re-authentication. ConsistentAddress must be
changed to false for the session migration to work properly. If the attribute
is set as true when the authentication session is migrated, the SP rejects the
connection from the new IP and redirects user to the IdP. After the redirect,
the IdP simply re-authenticates the user automatically with the transferred

11

CHAPTER 2. SINGLE SIGN-ON

IdP session information and creates a new SP authentication session for the
user.

2.3.2 Identifying cookies of Shibboleth

Shibboleth does the session handling with cookies. It uses both session cook-
ies that expire when the user agent exits, and persistent cookies that expire
when a specified time comes. Figure 2.4 shows the cookies Shibboleth uses.
Both the IdP and SP side have their own cookies for each session. The IdP
and SP issue these when the user is authenticated. User does not have to re-
authenticate himself while he has the session cookies. A third cookie is issued
when the SP decides which IdP the user wants to access for the authentica-
tion. This cookie is used when re-authentication to the SP is needed. From
the cookie, the SP knows straight what IdP to use for the user authentication.

-

—\

User client
1. SP 2. IdP session
session cookie
cookie
3. What IdP
to use
— =
SP IdP

Figure 2.4: Cookies Shibboleth uses for session handling

SP cookie is a session cookie. Normally the name of it starts with a tag
“ shibsession ”. Application code is appended to the end of this tag. The
name can be changed with a attribute in the SP configuration but the default
name is usually used.

12

CHAPTER 2. SINGLE SIGN-ON

IdP cookie is a session cookie. The naming of the IdP cookie varies. The
default name is “_idp_session” but it can be changed from the system at-
tributes. The name of the cookie depends also on the authentication method
used. Shibboleth may use outside methods for the authentication and in
that case the session authentication cookies come from that authentication
application.

The third cookie Shibboleth system has is the cookie containing information
about the IdP that the SP should contact for the authentication. If the user
has already chosen an IdP server to use, the SP automatically redirects the
user to this IdP. This cookie is usually a persistent cookie and naming of it
varies.

2.4 Other categorisations for SSO systems

Other categorisations for the SSO systems exist. These categorisations usu-
ally include systems that cannot be regarded as true SSO systems. Thus,
they are wider than the categorisation introduced in the earlier sections of
this chapter. This section introduces three of these other categorisations.

In 1995, T.A. Parker outlined two ways of doing SSO systems [36]. These
ways were scripting and approach using authentication and access tickets.
Scripting stores the user name and password in the user’s machine and pro-
vides them to the web services when required. This takes away the need to
type in login information from the user but it does not really offer any other
benefits of the SSO systems. The scripting still logs on the user on every
service separately. The access ticket approach is described in the beginning
of this chapter.

SSO systems can also be categorised depending on how they transfer and
store user credentials [18]. This categorisation divides the systems into five
categories varying on what they are based on: token, PKI, credential syn-
chronisation, secure client-side credential caching, and secure server-side cre-
dential caching.

Token-based systems store encrypted credentials in tokens after the user has
been authenticated. These tokens are stored in the client machine which
gives them to the SPs the user wants to access. A token-based system is
similar to a PKI-based. PKI-based systems use public key infrastructure to
encrypt and validate the tokens.

Credential synchronisation has a separate database of user credentials for

13

CHAPTER 2. SINGLE SIGN-ON

all different authorities. The credential databases are kept identical with
synchronisation. This architecture is not a true a SSO system because it only
keeps the same credentials on different systems. User still has to authenticate
himself on different systems separately.

Secure client-side credential caching unlocks the credentials from a primary
authentication authority and stores them securely in the system of the client.
These credentials are then used to authenticate the user on further logins to
other services. Secure server-side credential caching stores the credentials
in a central database. The secondary authentication authorities retrieve the
credentials from the central database.

Third way to categorise is actually a taxonomy. The SSO systems are divided
based on where the identity provider (IdP) is placed [37]. These are divided
into local and proxy solutions. Also, division to pseudo-SSOs and true SSOs
is made.

Local pseudo-SSO stores the user names and passwords in the client, and
gives them automatically to the service requiring authentication. This is
the scripting approach mentioned earlier. Proxy-based pseudo-SSO stores
the user information for authentication in a proxy. The user must trust the
proxy to store this data. At the beginning of the session user authenticates
himself to the proxy. The proxy does all the further authentications to the
services.

Local true SSO has a component in the client machine that authenticates
the user. The service trusts this component to give the right information.
Also, the integrity of the component must be ensured. Proxy-based true SSO
has an external server that handles the user authentication and information
passing. A trust relationship exists between the SP and the external server.
The SSO systems described in earlier sections all fall into this category.

14

Chapter 3

Environment

This chapter looks into the technologies and protocols single sign-on (SSO)
systems use to handle user sessions. The technologies needed for the session
migration are also discussed.

SSO systems use several protocols and technologies. HTTP state manage-
ment protocol uses cookies for state management. The HTTP connections
are otherwise stateless. The SSO systems use cookies for session handling.
Different SSO systems use the cookies in different ways. Also, different ar-
chitectural approaches have been proposed for the SSO systems based on the
use of cookies.

Cookies are handled differently on different client-side platforms. Some oper-
ating systems leave cookies to the applications while some operating systems
handle the HT'TP connections and cookies for the applications. Different
browsers also have their own ways for handling the cookie storage. There
are also differences between browsers in the desktop environment and in the
mobile environment.

Also concerning the authentication session migration, some things must be
discussed. A migrated session from a new platform will look like a replay
attack on the server-side. Also, the session migration needs a way to pass
the session information between the participating devices. The first section
tells about session mobility and the concepts it contains.

15

CHAPTER 3. ENVIRONMENT

3.1 Session Mobility

Raffaele Bolla et al. [11]| define four kinds of mobility: personal, service,
terminal and session mobilities. With personal mobility, the user is not
fixed to one position with the device but can move around. Service mobility
allows the user to access services in a consistent way with the same personal
settings and without changes in the quality of service (QoS) from different
devices. Terminal mobility assures that the mobile device retains connection
to the service when the device changes from one network to another. Session
mobility, also known as session migration, moves the session with the service
with the user when the user changes devices. All these four sides of mobility
are necessary for an ubiquitous computing environment.

Services usually create the sessions with the device that the user is using.
Session mobility ties these sessions to the user and not the device. The user
is free to change from one device to another depending on his needs at any
given time and the session follows with him. This adds to usability because
user does not have to start everything from the beginning when he has to
change devices.

The problem in moving the session from device to device with the user is also
called user-level handoff. This is in contrast to the term host-level handoff
used for terminal mobility. Cui et al. [17] show three problems that have to
be considered when implementing session mobility:

1. Session information has to be captured, stored, and forwarded to the
target device of the migration in a seamless manner. The session has
to continue where it was left off.

2. The target device of the migration is usually very different from the
original device. The session has to be modified to fit the target device
and the personal settings the user has on it.

3. The migration has to be optimised to work fast enough when compared
to starting the session from beginning on the target device.

Session mobility has been researched in internet browsing [46][26][10] and
multimedia sessions [12][31]. Session mobility allows the user to browse for a
long time on one device and change to a more suitable device if his situation
changes. Multimedia sessions are especially concentrated on migrating a
video session. Also, medical environment takes advantage of session mobility
[20].

16

CHAPTER 3. ENVIRONMENT

3.2 Cookies

The Internet cookie is defined in RFC 2965 of Internet Engineering Task
Force [29]. Cookies are used by the web servers to store information in the
client-side user agents for state management of the HT'TP connection. With
the cookie state management, the server gets information about the client
straight from the client itself and does not have to keep a separate list about
the information and which client the information belongs to.

Cookies are used for a number of things. They are commonly used by web
sites as shopping carts for the items that a customer wants to buy from an
Internet shop, they can be used for session handling when login is required,
or they are used to track the users behaviour on the internet.

Web server first sends a cookie with a Set-cookie response header when the
user agent requests a web page. User agent stores this cookie and sends it
back to the web server when the user requests a web page with a correspond-
ing domain and path again with the user agent.

There are two kind of cookies: session cookies that do not have an expiry
date and are discarded when the user agent exits, and persistent cookies that
have an expiry date and are discarded when this time comes. Cookies have
name, value, and attributes. Value is the information that the web server
wants to store in the cookie. Cookie attributes are

e Domain of the web server that sent the cookie.

e Path is the URL of the page on the server that generated the cookie
response.

e Max-Age is time that the user agent stores the cookie. After this
time, the cookie is discarded. If the max-age attribute has not been
set, the cookie is discarded when the user agent shuts down.

e Secure tells if a secure connection must be used to send the cookie to
the web server. By default, cookies are sent over an insecure channel.

e Port tells the port where the cookie is sent. By default, any request-
port can be used. The port tells if the cookie is a HT'TP cookie or if it
used with some other protocol.

17

CHAPTER 3. ENVIRONMENT

3.2.1 Cookies in different operating systems

This section tells how cookies are handled in PC and Mac environments.
Browsers in both Linux and Windows operate the same way regarding cookie
handling. Mac OS handles the cookies in a different way.

PC environment has several options for browsers. This section compares the
three biggest browsers, namely Internet Explorer (IE), Mozilla Firefox, and
Opera, on how they handle and store cookies. All these browsers store the
persistent cookies in the file system and the session cookies in memory. There
is no common way on how they store the persistent cookies. The browsers
store the persistent cookies in different places and in different formats. Table
3.1 shows a comparison of cookie handling between these three major web
browsers in PC environment.

Web browser Accessing File for cookies | Storing format
cookies in
memory

Internet Ex- | not possible in separate files | text

plorer

Mozilla Firefox | user side script- | cookies.sqlite sqlite
ing

Opera manually cookied.dat Opera’s own for-

mat

Table 3.1: Comparison of cookie handling on different browsers

Internet Explorer (IE) offers some options for extendibility to the user. These
options mostly include possibilities to manipulate the graphical user interface
(GUI). IE has no options for the manipulation of the stored cookies. The
persistent cookies can be accessed in the file system. IE stores the cookies
in two places. Cookies are first stored in temp files and later transferred to
the browsers cookie directory. All cookies of IE are stored in separate files
which makes identifying individual cookies easy.

Morzilla Firefox has wide extendibility. All projects of Mozilla are open source
and offer many possibilities for a developer to change the functionality of the
browsers. With extensions, the browsers outlook and many other features
can be controlled. These features include the possibility to fully control the
cookies the browser has in store. The possibility to control the cookies makes
Firefox the best option in the PC environment for extracting and importing
the cookies.

18

CHAPTER 3. ENVIRONMENT

Opera offers a possibility for the user to manipulate the browsers stored
cookies with an editor built into the browser. With the editor, user can add
and manipulate both the persistent and session cookies. Opera does not
offer a possibility to extract the session cookies from memory with a user-
side script. The persistent cookies can be accessed from the cookied.dat file
they are stored in. Thus, to extract the session cookies the user would have
to first change them to persistent cookies with editor and then retrieve the
cookies from the cookie storing file.

Cookie handling in Mac OS is different from the cookie handling in the PC
environment. The Mac OS offers a package for the HT'TP connections. Thus,
the operating system also handles the cookies. This is an integrated approach
to cookie handling and offers an opportunity for all applications to store the
cookies in a centralised location. With the Mac OS HTTP package, the
cookies can be added and manipulated freely. Thus the cookie extraction
is possible for all browsers and applications on the Mac OS. The software
developers kit (SDK) that offers access to the HT TP package is not available
for free.

3.2.2 Browsers and cookies on mobile platforms

A wide variety of browsers exists for mobile devices. Different devices have
different operating systems, and correspondingly, different web browsers.
A browser that would work on all or even most mobile operating systems
does not exist. In this section, we go through browsers MicroB, Fennec,
[Phone’s Safari, Mobile browser for S60, and Opera Mini as examples of
mobile browsers. Other browsers for mobile platforms exist, for example,
Opera Mobile, IEMobile, and NetFront. These browsers are not included in
this research because they offer no new angle to the cookie handling or other
operations from the desktop versions or other mobile browsers discussed here.

Mobile devices have less resources available than desktop computers. Thus,
the browsers must be more lightweight. The mobile browsers usually have the
same inner workings with the desktop browsers but the main difference is in
graphical user interfaces (GUI) and on how the GUIs are implemented. For
example, all Mozilla-based browsers have the same component libraries for
cookie handling, but the placement of extension buttons and menus are done
differently on different browsers. Mozilla-based browsers include Firefox,
MicroB and Fennec.

MicroB is a browser made by Nokia for the Maemo operating system that is
used in Nokia internet tablets. This browser is compatible with the Mozilla

19

CHAPTER 3. ENVIRONMENT

browsers in other aspects than graphics. MicroB uses GIMP Toolkit (GTK+)
used in the Maemo for graphics instead of the Mozilla’s XUL XML user
interface markup language that is used in other Mozilla browsers. GTK-+
is a more lightweight solution and is thus better for a platform with limited
resources. If a Mozilla browser extension uses graphics, it has to be ported
to work in the MicroB. Otherwise, it should work fine without changes.

Mozilla community is developing a new browser for mobile platforms called
Fennec. At the moment, a beta version for N800 and N810, and an alpha
version for window mobile exist, and Mozilla is also developing a version for
Symbian OS. Fennec will have the same libraries and XPCOM components
the normal Mozilla browser has, but the GUI is different. Fennec uses XUL
for graphics just as Firefox but the GUI of Fennec is more lightweight. The
Mozilla community does not restrict the modification of the GUT but offers a
set of guidelines how the extensions should and should not modify the GUI.
Most Firefox extensions should work on Fennec. Only changes to follow the
Mozilla community guidelines are needed.

The mobile version of Mac’s Safari browser used in I[Phone is very similar to
the desktop version: operating system handles HTTP and cookies. Symbian
operating system that is used in many smart phones has a browser similar to
the mobile Safari called Browser for S60. Browser for S60 and Safari use the
same Webkit engine for the GUI. Thus, Safari widgets made to change the
GUI should also work in Browser for S60 though the original GUI is different
on the browser. Symbian OS also handles the HT'TP connections and cookies
for the Browser for S60.

Opera Mini has a different approach on making a lightweight browser. Opera
Mini does browsing through a proxy that compresses and preprocesses the
web pages to better fit in the mobile environment. With the compression,
download times of web pages are faster because mobile devices usually have
a limited bandwidth. The Opera Mini browser does not have all the func-
tionality of a traditional browser because the preprocessing only gives the
browser what it should display and not the original HTML code. The Opera
Mini proxy keeps track of the web server cookies and handles the cookie
transactions.

3.3 Cookies on single sign-on systems

Cookies in general are used for state management of HTTP connections.
SSO systems use cookies for session management to see if the user has al-

20

CHAPTER 3. ENVIRONMENT

ready authenticated himself with the SSO system. Several Web-based SSO
systems use cookies for session handling [40]. SSO systems can also use other
approaches. Higgins selector-based identity framework does not use cookies
[2]. Tt uses information cards and tokens. Also, other SSO systems using
tokens or PKI exist. These architectures need some client side infrastructure
or more administration than a cookie-based system. Using cookies is usually
the fastest approach [16].

Vipin Samar proposes three approaches for cookie-based SSO system in his
paper Single Sign-On Using Cookies for Web Applications [40]. These ap-
proaches are a centralised cookie server, decentralised cookie server, and cen-
tralised cookie login server approach. These are described next in more

detail.
1. Login information
4. Application data + cookie i Web server A

2. Login information 3. Cookie + brownic

Client browser)
Cookie server

I
6. Validate cookie 7. Brownie

[Hj.

5. Cookie with App URL l

8. Application data Web server B

Figure 3.1: Control flow of centralised cookie server approach

Brownie is a type of cookie that servers use for communication between each
other. Centralised cookie server approach uses brownies to pass information
between the cookie server and the web server user wants to access. Normal
cookies store data in the client browser. Web servers of the centralised cookie
server approach do the user authentication individually [40] or the cookie
server does the authentication [16]. Figure 3.1 shows how data flows in the
centralised cookie server approach:

1. Client browser starts the session with the web server A and sends its
login information to the server.

21

CHAPTER 3. ENVIRONMENT

2. Web server A passes clients login information to cookie server for vali-
dation.

3. Cookie server validates user authentication and sends back a cookie for
identifying that the client now has a session in the cookie server and a
brownie containing the user’s identity information.

4. Web server A gives the cookie from the cookie server to the client. Now
the client browser can authenticate its further sessions to web servers
with this cookie.

5. When the client wants to use an application in the web server B, it
sends the cookie server cookie first to the server B. The web server B
is in the same SSO domain as server A.

6. Web browser B validates the cookie with the cookie server.

7. Cookie server again gives the user information in a brownie but passing
the cookie back is not needed since the client already presented it.

8. Web server B gives client access to the application that it requested.

The decentralised cookie server approach has no cookie server. Web servers
authenticate the users and create the cookies themselves. Server stores more
information in the cookie given to the client. This information includes user
name, user [P address, web server name, and cookie expiry time. The server
digitally signs the cookie information. Decentralised cookie server approach
lessens the amount of management needed. However, it makes it harder to
change the information structure of the SSO system because it has to be
done on all web servers using the system. Also, the size of cookies is larger
and the SSO cookies cannot be used for state management.

The third approach, i.e. centralised cookie login server, does authentication
and cookie creation in one place. When client browser tries to login without
the SSO cookie, web server redirects the connection to the login server. Login
server does the authentication and issues a cookie that it sends to the web
server with further requests. Login server re-directs the client server back
to the original web server, and the server grants the client its own session
cookie. Figure 3.2 shows a control flow model of this approach. SAML-based
SSO systems use the centralised cookie login server approach.

22

CHAPTER 3. ENVIRONMENT

Client Web server

1.Login —

[1

| E— 2. redirect to login

% =
3. Login S
1 L 1

4. Cookie + redirect back to web

Login server + Cookie server

Figure 3.2: Control flow of centralised login server approach

3.4 Cookies and security

A number of things affect the cookies that are used in SSO systems. Park
and Sandhu [35] identify three types of threats when using cookies on the
web. First, cookies are normally in clear text in the web. This makes them
vulnerable to snooping. Second, cookies are stored in web browsers in clear
text and can be accessed by the user. The user can thus alter the cookie data
and pose as a different user. Third vulnerability is the way the client chooses
where to send the received cookies. Attacker can make a URL impersonating
the original web site, and make the client browser send it the cookies instead
of the original site. This is called the cookie-harvesting threat. Harvested
cookies can be used to perform a replay attack.

Snooping threat is easy to protect against. SSL protects the connection
when sending cookies. Still, this does not help to protect against the other
threats [35]. Encrypting the cookie data prevents the attacker from seeing
the cookie information but it also may open a vulnerability. If an attacker
gets the session key used to encrypt the data, he can do serious harm to the
system. This is why the cookies should not contain any user information

CHAPTER 3. ENVIRONMENT

preferably only the session identifier in the SSO system. [16]

The cookie harvesting vulnerability causes the web browser to send cook-
ies to the wrong recipient because browsers identify the servers only from
the URL and if the attacker can impersonate the server with the URL the
browser thinks it is the original server. Attacker captures the cookies with
this vulnerability and uses them on replay attacks. Cookie handling in gen-
eral needs a bigger change to correct this problem but protection against it
can be achieved. Three methods exist for the protection: checking that the
cookies come from the same IP address that they were sent, storing users
password as a hash in the cookie and asking the user for them on new web
sites, or using digital signatures to check the identity of the user every time
he connects [35]. Only the first method works in the SSO systems. The other
two render the SSO unable to work properly.

Cookies are vulnerable in the client system. Therefore, persistent cookies
should not be used. Session cookies will be destroyed when the user exits the
session but persistent cookies usually stay on the system longer. Likewise,
the session should have an expiry time in the server to prevent an attacker
from using the hijacked session forever. [21]

3.4.1 Cookies vs. certificates

One way for authentication in the internet is the use of certificates. RFC3280
of Internet Engineering Task Force [25] defines the web server certificates. In
a way, certificates are the opposite of the client authentication with cookies.
Web services use the certificates to prove their identity. A certificate contains
a signature of a third party that assures that the certificate holder is who he
claims to be. A web certificate also includes the web servers public key for
SSL/TLS connection creation.

The checking of certificate authenticity in web browsers is left to the user. If
a user trusts the certificate issuer, he can accept the certificate to be trusted.
This is the same kind of trust relationship that has to exist between a service
provider (SP) and identity provider (IdP) in a federated SSO system. The
difference is that security policies of an individual users may be more lax in
what they accept as trusted than with the SPs.

Web servers supply the certificates at the beginning of a connection to the
client much like the client supplies the cookies to the server. Certificates
have an expiration date which is longer than the lifetime of a session cookie.
Certificates are resigned with the certificate issuer when the expiration date is
reached. The update of a certificate on a web browser is done automatically

24

CHAPTER 3. ENVIRONMENT

if the user chooses to trust the certificates from a certain source or the user
is asked every time a certificate changes if he still trusts the source.

3.5 Replay attacks

Replay attacks are attacks where the attacker eavesdrops a data exchange,
copies parts of the exchange, and modifies and replays these parts to the
participants of the exchange or other targets. Replay attacks can be done
without decrypting or even understanding the encrypted data. Syverson gives
a complete taxonomy of replay attacks in A Taxonomy of Replay Attacks [48|.
The taxonomy has two component taxonomies: the origin of the message,
and the destination of the message.

Syverson divides the attacks into two categories depending on their origin:
run external attacks, and run internal attacks. Attacker uses messages from
outside the current run of the protocol in run external attacks. Correspond-
ingly, run internal attack uses messages from inside the current run of the
protocol. The run external attacks can be further divided into classic attacks
and interleaving attacks. The classic attack uses messages from a previous
run of the protocol run. The interleaving attack uses messages from a pro-
tocol run at the same time.

Depending on the target of the messages, the attacks are divided into two
categories: straight replay, and deflections. Straight replays replay the mes-
sage to the intended original receiver after a delay. The deflection can be
done back to the sender or to a third party.

An attack where attacker captures and replays the authentication session
cookies to the SSO server is a classic straight replay attack. The cookies
are captured from a previous exchange of the server and the client and then
replayed straight back to the server.

3.5.1 Protecting against replay attacks

Several solutions exist that protect against replay attacks. The SSO systems
usually use TP address checking against replay attacks with stolen cookies.
The server accepts cookies only if they come from the same IP address they
were issued to. This limits the cookies to only work from the original device.
For the authentication session migration we need to consider other meth-
ods to protect against replay attacks to prevent the replay protection from
discarding the transferred session authentication cookies.

25

CHAPTER 3. ENVIRONMENT

One way for protection against replay attacks adding information to the
messages. The information is checked to ensure that the information has not
been used before or if it belongs to a different process. The information is
usually something that the application itself does not need for the process to
work. [15]

Systems must make sure that the sessions are set to expire at some point.
If attacker can get access to the session with a replay attack, he still cannot
create a new session. Expiring the sessions prevents the attacker from abusing
the hijacked session endlessly. Ye et al. show in Efficient Cookie Revocation
for Web Authentication [49] that many web services do not delete the session
from the server when user logs out. They only remove the session cookies
from the client machine. The session continues in the server until it expires.
This lets the attacker exploit the hijacked session even if the user thinks that
it has ended.

Protection against modified messages can be done by ensuring the contents
integrity. This integrity ensuring can be done by adding hashes of the message
content to the message. By checking the hash, it can be seen if the content
has been tampered with.

3.6 Transport Layer Security (TLS)

Transport Layer Security (TLS) is a security protocol that creates secure
transport layer connections between devices. TLS is the protocol usually
used for securing cookie transfers. TLS is defined in RFC5246 of Internet
Engineering Task Force [19]. It is based on the older secure sockets layer
(SSL) protocol.

TLS uses both asymmetric and symmetric cryptography. Web browsers get
and store the public keys of servers in the same certificates that authenticate
the servers identity. The asymmetric public key cryptography protects the
exchange of the shared secret that the symmetric cryptography uses. The
shared secret encrypts the data transfer between the devices. TLS can use
many different ciphers for the transactions. These collections of ciphers are
called cipher suites, and TLS negotiates in the beginning of a connection
which suite will be used. A weak suite means a vulnerable connection.

TLS has a feature called the session resumption that is described in RFC
4507 [39]. The session resumption can resume a previously created TLS
session with storing the session information in a ticket in the client-side of
the TLS connection. Also, the shared secret that the TLS connection uses is

26

CHAPTER 3. ENVIRONMENT

needed for the session resumption. Thus, a replay attack with a stolen ticket
would not resume a connection. The session resumption resumes the TLS
connection but it will not resume the data connection the TLS connection
was protecting [28].

3.7 Transfer method

Desktop computers and mobile devices have several technologies for data
transfer including the SSO session data. The data can be transferred either
through wires or wirelessly. The wireless technologies include Bluetooth and
WLAN. The transfer does not have to be done straight from one device to
another. A third device can be used as a storage for the information. The
information can be retrieved from this storage later when needed. The next
three sections look into these possible ways of data transfer. The fourth
section compares the pros and cons of the solutions.

3.7.1 Bluetooth

Bluetooth is a connection technology where individual machines are con-
nected without cables or plug-ins commonly used to connect mobile phones
with computers. Bluetooth is based on a client-server model where client
searches for devices in its area and looks at their services. These services
include access to internet, and file transfer or sharing. Devices can be paired
in Bluetooth to work as trusted devices with each other.

Server adds the services it offers to a service record. This record is given to
the client when it searches for servers and their services. If the client finds a
service it wants, it connects to the server and requests access to the service
and server may or may not allow the client to use the service. Most devices
that have Bluetooth enabled can work as both client and server. Devices
such as earphones naturally cannot work as servers.

Bluetooth uses Radio frequency communication (RFCOMM) to pass com-
munication between applications on different devices. RFCOMM is created
on the top of Logical link control and adaptation protocol (L2CAP) which
handles the communication between devices. RFCOMM is also known as the
serial port emulation, and it offers the serial port profile (SPP) service in the
service record. The sockets SPP creates between machines offer a reliable
data stream much like TCP.

Bluetooth uses Object exchange (OBEX) protocol to transfer binary objects.

27

CHAPTER 3. ENVIRONMENT

Infrared Data association originally created the OBEX for data transfer on in-
fra red connection but the Bluetooth Special Interest Group has also adopted
it. Thus, OBEX is not an integral part of the Bluetooth, and it is not included
in all the Bluetooth libraries even though many of the Bluetooth services use
OBEX for file transfer. OBEX uses RFCOMM for the data transfer.

Bluetooth uses encryption to protect the link layer connections. Each Blue-
tooth device has a unique address. With the unique address, Bluetooth de-
vices are identified individually. Devices can be paired to accept connections
and data from a selected unique device. If the devices have not been paired,
the device asks the user to accept the connections. The pairing feature adds
to usability if the other device is trusted. The paired devices have a shared
secret that is used to authenticate the devices to each other. The secret is
needed because Bluetooth addresses can be faked [23].

3.7.2 Wireless local area network (WLAN)

WLAN is a wireless option to make a local area network. WLAN connects
two or more devices to form a network. Many mobile devices have the option
to connect to a WLAN network and WLAN can also be added easily to a
desktop computer if it does not already have it.

Computers use WLAN to connect wirelessly to the physical LAN network to
offer mobility for laptop users. WLAN connects computers to LAN networks
through access points. With the connection to access point, the computers
work in the LAN as any other machines. WLAN can also form direct P2P
connections without using an access point. These connections are called
wireless ad-hoc networks. They are faster to setup and can work more flexibly
than the traditional way of connecting in WLAN. Wireless ad-hoc networks
are not meant to be permanent solutions for the network but a small group
of computers can form fast and simple temporary connections with them.

Older security mechanism of WLAN is called Wired Equivalent Privacy
(WEP). It protects the WLAN network and the data transfers in it. WEP
has had problems with its security but the IEEE 801.11i version of the WLAN
has addressed many of these vulnerabilities. The security mechanism based
on most of the features of IEEE 801.11i is called Wi-Fi Protected Access
(WPA). Also, poorly configured WLAN network will have security prob-
lems. Therefore, depending on the network the data transfer may or may
not be secure. [34]

28

CHAPTER 3. ENVIRONMENT

3.7.3 Internet

Internet can also transfer and store a browser session. This is a common and
researched way to transfer web browser sessions. Hsieh et al. [26] introduce
three approaches for the browser session transfer from platform to platform:
client-based, server-based, and proxy-based. Several implementations for
these approaches exist. Single implementation can also be a hybrid of two of
the approaches [10].

The client-based approach needs a small client side application to be installed.
This application tracks or has access to the browsers session information.
On transfer, the application sends the gathered session data over a P2P
connection to the new platform or stores the data in a server where it can be
accessed. Client-based approach allows easy access to the browser data, but
the transfer is more complex. Also, the used browsers have to be similar, or
importing and exporting of the browser session information can be difficult.

The server-based approach stores the session information on the web servers.
This approach is often used in web shops. User can save his situation in the
shop, and the shop will restore the user to this session when he logs to the
system next time with any browser. This approach will not store the whole
session of the user but only the part that is in the web server that offers the
session storing service.

The proxy-based approach does surfing on the web through a proxy. Proxy
monitors browsing and stores the essential session data. Still proxy lets
all the session information to the client machine. For example, cookies are
stored both on the proxy and the client browser. When user wants to resume
the session, he simply contacts the server and authenticates himself as the
user who owns the session. The proxy-based approach allows session to be
resumed even if the connection of the original session was broken. [13]

Connections from the client to the proxy are protected with SSL/TLS in
the internet solution of browser session transfer. Much of the security of the
transfer depend on the proxy. The proxy would have to be trusted to be
secure if the user does not have the proxy under his own control.

3.7.4 Comparison of the transfer methods

All the three options, Bluetooth, WLAN, and the internet transfer, are avail-
able on most mobile devices and possible to get on all desktop computers.
Availability is therefore not a deciding criteria.

29

CHAPTER 3. ENVIRONMENT

Bluetooth and WLAN comparison shows that both offer very similar link
layer connections that are created between machines. WLAN has to have
additional application for the service discovery on different devices and a
protocol to transfer the needed data between machines. Bluetooth offers
these services amongst its protocols. Service discovery on devices is part
of Bluetooth and smaller amounts of data can be easily transferred with
RFCOMM and larger files with the OBEX file transfer.

Bluetooth and the internet transfer have more differences than Bluetooth and
WLAN. The client-based approach in internet transfer is very similar to the
implementation with Bluetooth. A client side application gathers the needed
data and sends it to the new device in both methods. The only difference is
on the link layer transfer method used. Bluetooth finds the new device for
the session easier than the search through TCP/IP that the internet option
does. Bluetooth only needs the devices to be close to the each other and
the target device to advertise the session transfer service. TCP/IP needs
the address or the name of the new machine to be known thus making the
transfer a bit more complicated.

Server-side approach does not work with session transfer [45]. Resuming the
saved session on the server would need the user to authenticate himself as
the owner of the session. This renders the SSO session transfer pretty much
useless because authentication for the saved session does not differ much from
re-authentication to the SSO system.

The proxy-based approach for the session transfer offers some benefits. The
user would not have to resume the session immediately and would not even
have to know the new device before saving the session because the session
could be retrieved from storage of the proxy anytime and anywhere. Still, the
authentication to the proxy is needed. Surfing the web through a proxy makes
browsing probably a little slower on a desktop computer. This defect could
be compensated if the proxy offered some compression and preprocessing for
the mobile browser similar to the Opera Mini discussed in section 3.2.2, thus
combining the functionalities of proxies.

Security-wise Bluetooth is deemed to be more secure than WLAN [23]. In
this thesis, the devices used in the transfer are assumed be secure and under
the user’s control. Bluetooth has only two devices in the transfer: the device
with the original session, and the device where the session will be transferred.
Internet transfer through a proxy adds a third device to this transfer. Blue-
tooth is thus a more simple solution from the security point of view than the
proxy transfer. Compared to the internet transfer, all parts of the Bluetooth
transfer are under the user’s control. Parts of the internet transfer are always

30

CHAPTER 3. ENVIRONMENT

more public and have to be trusted.

In this thesis, the control of the cookie data is important. The session mi-
gration need only the data of the authentication session. Building a proxy-
based session transfer from scratch would be too big project for this thesis
and might run into problems that are not inside the scope of the problem.
Using a ready made implementation of the proxy would transfer too much of
the browser session data and not give a full control on what is transferred.
Therefore, client-side Bluetooth transfer is the best option to make the data
transfer lightweight and flexible.

31

Chapter 4

Design

This chapter looks into the design of the implementation made in this thesis.
The goal is to design a system for transferring session cookies of a cookie-
based SSO from one client platform to another. These transferred cookies are
used on the new platform to continue the existing SSO session. We chose to
transfer authentication session of a cookie-based SSO system because it can
be done without significant changes to the server-side of the system. Token-
based SSO system such as Higgins selector-based identity framework needs
more changes to the client-side program for the authentication migration to
work.

The cookie-based SSO session migration needs three components to work:
first the cookies are extracted from the original machine, second the cookie
information is transferred from the original machine to the target machine,
and third the transferred information is imported to the target machines sys-
tem in the correct format. The cookie information is altered for the transfer.
The importation on the target machine creates new cookies with the trans-
ferred information, and places the new cookies in the systems cookie storage.
These new cookies are used to continue the SSO session with the target
machine.

Figure 4.1 shows an example on how the system transfers the SSO session
cookies from a desktop computer to a mobile device. Cookies are extracted
and imported with a browser extension in this example.

1. Browser extracts cookies with the browser extension and writes them
into a cookie file.

2. Browser starts transfer client, and provides it with the URL the user
is on at the moment and the location of the cookie file.

32

CHAPTER 4. DESIGN

Desktop computer

Browser extension

1. Extracts

2. Starts
client

Transfer
Client

3. Connection
creation
and cookie
transfer

Mobile
Browser
5. Imports
4. Starts
browser
Transfer
Server

Figure 4.1: Example of a cookie transfer

3. Transfer client contacts a server, and sends the cookie information and
the URL. Server writes the cookie information to the cookie file in its

own system.

4. Server starts browser with the given URL on the mobile device.

5. Mobile devices browser imports the cookie data from the file before
starting the browsers user interface. Now user can continue the SSO
session started on the original platform.

The transfer works the same way from the mobile device to the desktop com-
puter. Thus, the transaction applications are equal, similar, and not based
on the client-server model. Client and server parts here are differentiated be-
cause the client part attempts the connection to a server part, which listens
for the connections. The server is started before the client. A file is used to
store the extracted cookie data, and to pass the cookie information between

the components.

33

CHAPTER 4. DESIGN

4.1 Cookie extraction and importation

Cookies must first be extracted from the original machine to start the SSO
session transfer. Cookies are extracted from the operating systems cookie
storage or from the web browsers storage depending on the approach used
on the platform. The two approaches operating systems use for the cookie
handling are discussed in the section 3.2.1. Both approaches usually offer
an interface for the cookie management. Both the operating systems and
web browsers cookie management interfaces work in similar manner from the
user’s point of view.

The cookie extraction applications task is to fetch the wanted cookie informa-
tion from system and pass it to the data transfer application, which handles
the transfer between devices. The application also imports the transferred
cookies to the target system.

Cookies in SSO systems are usually session cookies. Thus, the cookie information-

extracting application must have access to the cookies the browser has stored
in its memory. If browsers manage the cookie handling in the system, the
cookie extraction is done with a browser extension to get access to the ses-
sion cookies. Otherwise, the cookies are handled with a component in the
operating system. However, the browser extension is needed to give the user
a way to start the session transfer from the browser. Also, the current URL
of the browser is extracted with the extension and passed to the transfer
application.

4.1.1 Cookie data

The cookie extractor stores the extracted cookie information into a file. The
file passes the information from the cookie extraction component to the trans-
fer component. The data transfer between the browser extension and the
transfer component needs the cookie file. If the operating system handles
the cookies, the cookie file is not needed because the cookie extraction and
transfer are done in the same place. Also, the transfer component sends the
information to the target platform either as a text string read from the file
or the whole file in binary format.

The cookie extractor writes the cookie text file in the same format the cookies
are in stored the memory. SSO Session cookies are encrypted, and thus have
special characters. Keeping the character encoding same prevents the special
characters from changing.

34

CHAPTER 4. DESIGN

The SSO session transfer does not need to transfer all the information about
the session cookies. Section 3.2 discusses about cookies and their names,
values and attributes. Four attributes that need to be extracted are name,
value, domain, and path. The name and value represent the most essential
information of the cookies. These are the values the web server stores in the
cookies. The cookie handler on the target device of the transfer also needs to
know who to send the cookies to. The owner information of the cookie is in
the domain and path values. The section 3.4 discusses how all SSO cookies
should only be sent through a secured connection and only session cookies
should be used. Thus, we assume the secure attribute of the cookies as set
on and max-age attribute is not needed. Last attribute, port, is rarely used
and its transfer is not necessary.

_shibsession 3cad23363448£3120100850f28faa3zh291d5129
_0244584dh154582356d3e3080£9251£761h0

wywlogin.tkk.f1i

!

_shibstate_3cad23363448£3120100950f28faa32h291d5129
https%3A%2Fs2Fwuuloyin. tkk. £i%2F33Fbroker for33DLnBraySma3S%3DsZeredirect_to
wywlogin.tkk.f1i

!

Figure 4.2: Example of the cookie file contents

Figure 4.2 shows an example of how the cookie data is stored in the cookie
file. The cookie file has two cookies. Each cookie is four lines long. First line
is the name, second value, third domain, and fourth and final line the path.
All lines have only the data the browser gives as the values. This way, the
data can be easily imported back to the browser environment. The cookie
information file starts with an empty line.

4.2 Data transfer

The data transfer transports the cookie data from the original platform to
the target platform. The data transfer applications parts are divided into a
client and server. Client part transfers the cookie information to the server.
Server listens and waits for the clients connections and stores the received
data.

The cookie data is transported between platforms as a data stream containing
a string or as a binary file with a file transfer protocol. The amount of the
cookie data is relatively small because we only want to transfer the SSO

35

CHAPTER 4. DESIGN

session cookies. The cookie transfer is a copy. Thus, after the transaction
the application keeps the cookie data in the memory of the original device
but removes it from the cookie files. This prevents the session cookies from
being left in storage in the file system when they are deleted in the browser
at the end of a session.

Data transfer client reads the cookie information from a file pointed to it by
the cookie extractor, establishes a connection with the data transfer server,
and transfers the read information to the server with the current URL of
the browser. The user starts the client with a menu option or button in
the browser. The client closes after the transaction with the server has been
done. Before closing, the client erases the cookie file.

The data transfer server starts the transfer service and waits for a connection.
When connection is established, the server receives the cookie information
and stores it to a file. The information includes the URL for the web browser.
The data transfer server starts the web browser of the device with the URL.
User must start the server when he wants to transfer the SSO session, and
the server will close after the transaction with the client is carried out. This
prevents further transfers from tampering with the user’s current session.

4.3 FEvaluation criteria

The following criteria is used to evaluate whether the design and implementa-
tion carried out in this thesis are successful. The testing of the implemented
SSO session transfer system has been done with existing SSO system imple-
mentations. The list offers explanations as to why certain criteria was chosen
and what is good to remember on the implementation stage.

1. The transferred SSO session should continue to work on the target
platform as it has worked on the original platform. In other words, the
transferred SSO session should stay the same and no new SSO session
should be created on the basis of the transferred information.

The web server often creates its own cookies for the actual access to
the services of the web server using the identity given by the SSO. The
SSO system may use this information to create a new SSO session if
the original SSO session does not exist anymore.

2. Transferred cookies should be identical enough to work on the new
platform.

36

CHAPTER 4. DESIGN

All the needed values and attributes are sent to the target platform.
Also, the values should stay the same from platform to platform. This
may pose a problem if different encodings are used on different devices.

3. The transfer should only affect the client side of the SSO session. No
changes or only minimum changes should be made on the SP or IdP
sides of the SSO system.

We want to be able to transfer multiple SSO sessions simultaneously.
If this is possible with changes only on the client-side for all the SSO
systems, the session transfer is easy to implement and to use.

4. The transfer should be faster and require less input from the user than
logging out and re-authenticating himself on the target platform the
conventional way.

The transfer would be near useless if re-authentication would be faster.
However, typing the user credentials on a mobile device is often harder
than on a desktop computer. The only place where user input might
be needed is in the choosing of the new platform if more than one
Bluetooth device offering the same service exists in the region.

5. User should be able to continue his browser session from the same
location on the target platform. The whole internet session does not
need to be migrated, only the SSO authentication sessions.

Transferring the whole internet session would be out of the scope of
this thesis. Transferring the current page though should be easy and
offers a substantial usability advantage when the user does not have to
browse back to the page on the target platform.

This criteria fills the fundamental aspects of the authentication session pro-
totype to be implemented. If some other points arise during the implementa-
tion, they are added when the implementation is evaluated. The evaluation
of the implementation against this criteria is in section 6.1.

37

Chapter 5

Implementation

When we started to do this thesis, we did not know if it was possible to
migrate an authentication session to a different platform on the client-side
of the system without help from the server-side or external proxy. The goal
was to find out if the migration was possible, and if not, what things needed
changes for the migration to work.

First we examined how the authentication systems store their session in-
formation. The session information is stored on the clients with cookies of
the HTTP state management protocol. At the same time with the cookie
research, we found out how to transfer the cookie information between plat-
forms. From the start, Bluetooth seemed to be the most natural way to
transfer data between a desktop machine and a mobile device.

At the start, we did not have knowledge on how the cookies are stored or
handled by the browsers and operating systems. It quickly came clear that
Firefox was the only browser that had the possibility to extract and manip-
ulate cookies easily. Therefore, Firefox was chosen as the browser for the PC
environment part of the authentication session migration prototype. We also
found a new browser for mobile devices, Fennec, which is developed by the
same Mozilla community that is responsible for Firefox.

We needed an existing SSO implementation to test the authentication session
migration on. We studied if it was possible to use Shibboleth for this purpose.
Shibboleth is in common use in our university. Later, popular SSO system
OpenlD was also used in the testing.

This chapter looks into the cookie extraction and manipulation, the trans-
fer of the cookie information between platforms, and the importation of the
cookie data on the target platform. The last sections look into the exper-

38

CHAPTER 5. IMPLEMENTATION

iments done with the implemented authentication session migration proto-
type. The authentication session migration prototype was implemented for
devices presented in the first section.

5.1 Devices

This thesis has implementation of the authentication session migration pro-
totype for two devices: a desktop computer, and a Nokia E90 Communicator.
Python is the programming language for Bluetooth part of the implemen-
tation. Python is available on both devices but the devices have different
versions. This is not a problem but it is good to remember the different
version numbers.

The desktop is a everyday computer that has Microsoft Windows XP oper-
ating system (OS). Thus, the computer has wide selection of different appli-
cations and libraries. The Nokia N810 Internet Tablet is a mobile device. It
uses Maemo OS that has the beta version of the new Mozilla-based Fennec
browser available. Mozilla-based browsers on both the original and target
device makes the exporting and importing of the session information easier.
Table 5.1 lists the platforms of the devices, their operating systems, browsers,
and Python versions used in the implementation.

Device Operating sys- | Browser Python version
tem
Desktop PC Microsoft Win- | Mozilla Firefox | Python 2.6
dows XP 3.0.13
Nokia N810 | Maemo Fennec beta Python 2.5
Internet
Tablet

Table 5.1: The devices chosen for the implementation

5.1.1 Cookie extraction

The authentication session migration prototype needs to extract the session
cookies of the SSO system. The cookies are then transferred to the target
device for the session migration. Both selected browsers, Firefox and Fennec,
are Morzilla-based and handle cookies the same way. Thus, browser extensions
extract the session cookies on both devices.

39

CHAPTER 5. IMPLEMENTATION

Coding language for Mozilla extensions is Javascript. Mozilla browsers use
Cross Platform Component Object Model (XPCOM) components to add
custom functionality to the browser. Through these XPCOM components,
Mozilla browser extensions can access and use cross-platform libraries.

nsICookieManager nsIFile nsIProcess
Extracts the :D Stores the :‘D Starts the
cookie data cookie data transfer
from memory data in a file client

Figure 5.1: XPCOM components of the extension implementation

Figure 5.1 shows the XPCOM interfaces this implementation uses in the order
they are roughly called in the code. First nsICookieManager [42] extracts
the cookie data from the memory of the browser. NsIFile [32] stores the
cookie data in the right format into the cookie file. Last, the nsIProcess
[44] interface starts the data transfer client that transfers the cookie file data
to the target platform. The extension imports the cookies the other way
around. First the cookie data is read from the file with the nsIFile interface
and then the extension adds the cookies to the memory of the browser with
the nsICookieManager interface. The cookie importation executes when the
browser is started. Next we look into these interfaces and processes in more
detail.

XPCOM interface nsICookieManager manipulates the cookies in this exten-
sion: it retrieves, adds, and removes cookies. Retrieved cookies are in the
form of nsICookie [41] XPCOM component. NsICookie uses UTF-8 encoding.
The nsICookie component has nine attributes. The extension for nsICookie,
nslCookie2, gives additional six attributes. All of these attributes are read
only. If user wants to modify a cookie, he creates a new cookie with the
modified attributes and destroys the old cookie. The following attributes are
extracted from the nsICookies for the transfer:

e Name contains the name of the cookie that the server uses to identify
it.

e Value is the actual information the server stores in the cookie.

CHAPTER 5. IMPLEMENTATION

e Host tells the URL of the web server that owns the cookie.

e Path has the path in the web server for the service that owns the
cookie.

The next attributes are assumed to have a certain value or are not needed in
the migrated cookies:

e IsDomain tells if the cookie should be sent to all web pages in the
domain. A dot in the beginning of the host attribute tells that the
cookie is a domain cookie. Thus, the host attribute already tells if
the cookie is a domain cookie and the attribute does not have to be
transferred.

e IsSecure sets the cookie to be sent only through protected connections.
SSO session cookie should only be sent through secure connections and
thus we can assume this attribute to be always true.

e Expires tells the browser when the persistent cookie should be removed
from the storage as seconds since Jan 1, 1970. If the cookie is a session
cookie, this attribute is not needed. The Migrated SSO cookies are all
session cookies and this attribute is not needed.

e Status has the P3P status of the cookie. P3P is a protocol that allows
the web sites to tell the intended use of the information they gather with
the cookie. Authentication session cookies do not use this attribute.

e Policy is also connected to the P3P protocol and is not needed in
authentication session cookies.

e CreationTime contains the time the cookie was created. The cre-
ation time of the migrated cookies is the time they are imported to the
browser.

e Expiry has the actual time the cookie expires.

e IsHttpOnly is set if the cookie is a HTTP only cookie and should
only be sent through HTTP connections. The port attribute tells the
cookie is HT'TP only if it set as 80.

e IsSession tells if the cookie is a session cookie. All the authentication
cookies are session cookies. Thus, this attribute can be set as true on
the target device and does not need to be transferred.

CHAPTER 5. IMPLEMENTATION

e LastAccessed is the time the cookie was last accessed.

e RawHost has the host name of the cookie without the domain dot if
the cookie is a domain cookie.

First version of nsICookieManager offers two methods: remove and removeAll.

RemoveAll removes all cookies from the browser and remove removes only
individual cookies. Remove needs three attributes to identify the cookie:
domain (host), name and path. NsICookieManager also offers an enumera-
tor attribute that contains the cookies as a nsICookie components described
earlier. The SSO authentication migration extension uses the enumerator to
go through the cookies and chooses the SSO cookies for the transfer. The
newer NsICookieManager2 extension gives additional methods for the cookie
manipulation:

e Add adds a new cookie directly to memory of the browser. The authen-
tication migration extension uses the add method to import the cookies
on the target device. The add method is not the recommended way
to create new cookies to the browser [43]. The recommended nsICook-
ieService adds cookies when a page is loaded. Thus, it is not suitable
for this implementation, and the implementation uses add method of
the nsICookieManager to add the cookies directly to memory of the
browser.

e CookieExists checks if a cookie exists. The check needs a complete
nsICookie component as an attribute.

e CountCookiesFromHost counts the cookies corresponding to a given
host.

e GetCookiesFromHost returns the cookie corresponding to a given
host. Knowing all the hosts that have given a SSO session cookie
during the users browsing would be hard. It is easier go through all
cookies and decide from the cookie values if it is a SSO session cookie.
Identifying the SSO session cookies is not easy and is discussed further
in the section 7.2. The getCookiesFromHost returns an enumerator
containing the cookies as nsICookie components.

e ImportCookies imports all cookies from the cookie files the browser
uses. Browsers can use this method to transfer all the persistent cookies
from a different browser. Thus, the authentication migration extension
has no use for this method.

42

CHAPTER 5. IMPLEMENTATION 43

Add method of the nsICookieManager has eight attributes. The extracted
values, name, value, host and path, are the first attributes in the add method.
The host is called domain in the nsICookieManager. The last four attributes
are set as follows:

e Secure assures that the cookie is only sent through a secure connection
to the server. As the SSO cookies should only be sent through secure
connection, this is always set as True.

e IsHTTPOnly tells if the cookie is only sent through HT'TP connec-
tions. This setting is not normally used and can be set as False.

e IsSession tells if the cookie is a session cookie and not a persistent
cookie. SSO session cookies should always be session cookies. Cookie
importation sets the isSession attribute as True.

e Expiry tells the time the cookie is deleted. This attribute has no
meaning if isSession is set as true because the session cookies are deleted
when the session ends. Only session cookies need to be imported.

Cookie extraction
|

nsIFile | nsIProcess
|
J/ 1. Stores the extraced

cookie data
The cookie file 2. Starts the client with
cookie file place information
and URL

T 3. Reads the stored

cookie

Bluetooth Client

Figure 5.2: Interaction of the cookie extraction extension with the Bluetooth
client

Figure 5.2 shows how the nsIFile and nsIProcess components interact with
the Bluetooth client. NslFile interface stores the cookie information to be

CHAPTER 5. IMPLEMENTATION

transferred in a file in the root directory of the web browser extension. Nsl-
Cookie uses UTF-8 encoding. To ensure that the cookie information stays
the same, it is made sure that the data stays in UTF-8 coding when written
to a file. NsIFile offers a normal variety of functions for file manipulation. It
is the standard way of doing the file I/O in Mozilla extensions.

NsIProcess starts the Python application for the Bluetooth transfer between
platforms: the nsIProcess starts the Python interpreter with the Bluetooth
client file, current URL of the browser, and the position of the cookie file in
the file system as arguments. The Bluetooth client file contains the code to
be interpreted and other arguments are passed to this interpreted program.
The cookie file is located in the root directory of the extension.

There is one difference between the Firefox and Fennec versions: Fennec
does not have drop down menus. The method to start the cookie transfer is
therefore a graphical button in the tool bar. Fennec documentation does not
recommend this method, but at the moment, no other solution is offered. A
better place to put buttons for applications will probably be introduced later
by the Mozilla community. The authentication migration extension starts on
the Firefox from a menu item in the tools menu.

5.2 Cookie transfer

Based on the discussion in the section 3.7.4, we chose Bluetooth as the tech-
nology for the cookie information transfer. Bluetooth works in a client-server
model and offers suitable protocols for this implementation. Task of Blue-
tooth is to pair the devices and transfer the cookie information between the
them. Process in Bluetooth consists of three steps: device discovery, service
discovery, and connection creation. After these steps, the connection passes
data between the connected devices.

Both devices, the PC and the Internet Tablet, have the client and server
applications. The authentication session migration works thus both ways.
There are no differences between the client applications on either device.
The server applications differ on how they start the web browsers of the
devices.

We chose Python as the programming language for creating and using the
Bluetooth connection. Python needs an external library for the Bluetooth
operations. The library we chose is called PyBluez [7]. It is based on the C
library Bluez. PyBluez has a version for both the Microsoft Windows XP on
PC and the Maemo OS on the N810 Internet Tablet. This allows us to use

44

CHAPTER 5. IMPLEMENTATION

the same code on both devices.

PyBluez does not have support for OBEX that is the file transfer protocol
included in Bluetooth. It was first planned to be used in this implementation.
However, the amount of cookie information should stay fairly small, and small
amounts of text can also be transferred easily with the REFCOMM serial port
profile (SPP). If a OBEX file transfer is needed, libraries such as PyOBEX

exist.

RFCOMM connection in PyBluez works with virtual sockets. A socket is
created on both ends of the connection. The socket connection passes data
both ways. User writes data into the socket and the recipient on the other
end reads the data from his socket. PyBluez appends the new data in the
socket, to the end of the earlier data. The socket removes the data when it is
read. Thus, the simplest solution is to send all the data with one transaction.

5.2.1 Bluetooth client

Figure 5.3 shows a possible communication sequence between the Bluetooth
client and server parts. The right side shows how the client acts in the cookie
transfer transaction: the browser starts the client that begins with the device
and service discoveries. PyBluez does these both with the find services
function.

Correct Bluetooth services are discovered based on an Universally Unique
Identifier (UUID) that are unique for each application. With UUID, the
client can be sure that it contacts the right service. The client always asks the
user to choose the right device from a list of the discovered devices with the
SSO authentication migration service. When only one service is discovered,
only one option is on the list. If no devices with the service are discovered,
the dialog informs the user.

A graphical user interface (GUI) dialog gives the options for choosing the
right device for the transfer to the user. The dialog is done with GTK+. It
is easier to find and install libraries for windows than for N810. Thus, we
chose the native graphical library of the N810 GTK+. The actual GUT is very
small and uses only the basic elements. The suitability or the complexity of
the library was therefore not an important aspect. Figure 5.4 shows a screen
capture of the GUI dialog.

After finding the right device, the client attempts to create a connection with
that device. If the server accepts the connection and a socket is successfully
created, client transfers the cookie information file as a sting and appends

45

CHAPTER 5. IMPLEMENTATION

the browsers current URL from parameters given by the Mozilla extension to
the transfer socket. The URL is separated from the cookie information with
a delimiter. The data ends with an end tag to let the server know when the
transfer is complete. After the transaction is finished, the client closes.

5.2.2 Bluetooth server

The left side of the figure 5.3 shows the actions of the server in the Bluetooth
cookie transfer. Server starts the SPP service and waits for a connection.
When client connects, the server accepts the connection and waits for the
client to transfer the cookie and URL information string. If the string ends
with the designated end tag, the server stops listening for more information
and starts handling the string. First it takes the delimiter, end tag, and the
URL from the end of the string. URL is stored in a variable. Remaining
string is the cookie data that is written to the cookie file.

Last job for the server application is to start a web browser with the same
URL that was open on the original device. This URL was given with the
transferred cookie information string. The windows version of the server ap-
plication starts the web browser with the Python webbrowser library. Fennec
has no support in the webbrowser library as it is a new browser. Fennec
starts with the subprocess command in Maemo. Subprocess starts Fennec
by executing a shell script that has the line that starts Fennec.

5.3 Experiments

The authentication session migration prototype was tested on two systems:
OpenID [5], and Shibboleth [8]. OpenlD, and Shibboleth are described in
sections 2.2.1 and 2.3.1 correspondingly. The authentication session was also
successfully migrated on Central Authentication Service [1] SSO system de-
ployed in a project of the university. The test show that the authentication
session migration prototype migrates the authentications sessions success-
fully. Testing also shows how the SSO systems work with the migrated
session. The testing checks if the sessions can be continued from both de-
vices after the migration and if terminating the session from one device also
prevents the authentication session from working on the other device.

46

CHAPTER 5. IMPLEMENTATION

5.3.1 OpenlD

The authentication session migration prototype was tested with OpenID. We
chose Livejournal [4] as the service provider (SP) and ClaimId service as the
OpenlD identity provider (IdP). Livejournal is one of the OpenID SPs that
accepts identity information from outside its own organisation. Claimld as
the outside identity provider offers a clear distinction between the IdP and
the SP.

The session identifier of the Claimld is in cookie named “_claimid _openid”.
Migrating this cookie to the target device migrates the authentication session
of the IdP. Thus, we were able to migrate the authentication session of a
OpenID IdP to a target device. The session worked on the target device as
it worked on the original device.

The OpenID SPs have flexibility on how they are implemented. The session
migration for the Livejournal SP needed migration of two cookies: ljloggedin,
and ljmastersession. Presumably, the ljloggedin cookie contains information
about the user’s login to the Livejournal. Ljmastersession probably has only
session information. We cannot be sure if we migrated also other information
than the authentication session but the test shows that the authentication
session is migrated with these two cookies. Livejournal offers a possibility
for the user to set an attribute that checks that the cookies come every time
from the same IP address. Setting this attribute on prevented the session
migration from working for the Livejournal SP.

ClaimId does not force the session cookie to be sent through a secure con-
nection with the secure cookie attribute. However, the cookie transactions to
the ClaimId server use a secure connection. Livejournal does all the cookie
transactions through the normal non-secure HTTP connection. Thus, we
imported all the cookies to the target device with the secure attribute as
false. This was against our assumption about the SSO systems we did in the
section 4.1.1 and is a clear security vulnerability on both the ClaimId IdP
and the Livejournal SP.

During the testing we did not remove the session from the original device
when we migrated the authentications session to the target device. After the
migration, we were able to use the authentication session from both devices
with no problems. After logging out from Livejournal on one device, the
authentication session did not work from either device. The IdP, Claimld,
did not remove the session from the server if the session was terminated on
one of the devices.

47

CHAPTER 5. IMPLEMENTATION

5.3.2 Shibboleth

The authentication session migration prototype was tested on Shibboleth
deployed at our university. The testing was done on one IdP and three
different SPs. All the SPs had the consistentAddress attribute that rejects
the cookies from wrong IP addresses as true and checkAddress set as false.
This is the normal setup for a Shibboleth SSO system.

The consistentAddress check prevented the migrated authentication sessions
of the SPs from working from the target device. The cookie that has the
authentication session information starts with “_shibsession ”. The end of
the cookie is the application ID of the SP. Migrating this cookie to the target
device migrates the session.

The session cookie of the IdP of the SSO system of the university is called
“pubcookie s SSO”. The authentication on the Shibboleth’s IdP depends on
the authentication method the accessed resource wants the IdP to use. The
Shibboleth system of the university uses Pubcookie [6] for the authentication
on the IdP. The login cookie from the Pubcookie contains the authentication
session information of the IdP.

Migrating the authentications session cookie of the IdP enabled the authen-
tication to the different SPs without having to re-authenticate. The SSO
system asks the user on every authentication if the identity information of
the IdP can be passed to the SP but this function can be turned off. If the
function is turned off, the user cannot see the difference between a migrated
SP authentication session and a new SP authentication session that is done
with the migrated IdP session. Although, it is not the same thing to create
a new SP authentication session as migrating the session from the original
device.

The Shibboleth system used in the testing had a possibility to logout from
both the SP and IdP. Testing the SP logout functionality was not possible
because the migrated SP session did not work. The logout functionality of
the IdP was tested. After the authentication session migration, the logout
from the IdP ended only the sessions from one device. The other copy of the
session worked without a problem. Also, other SP sessions were not ended
with the IdP logout.

48

CHAPTER 5. IMPLEMENTATION

server

|
Starts SPP sewicej

Attermnpt to connect to server

client

=tarts device discnverﬂ

Searches for services
on found devices

Accepts connection

Transfers cookie data and UREL

Ends recieving when
encouters end tag

Saves cookie information to fil
and starts browser with UEL

ET

Closes

server

Clnsesj

client

Figure 5.3: Bluetooth client and server interaction

49

CHAPTER 5. IMPLEMENTATION

Q Choose a device EI[EIIXI

[Transfer] [Cancel]

Figure 5.4: The migration target choice dialog

20

Chapter 6

Evaluation

This chapter discusses how well the created implementation of the prototype
of the authentication session migration application answers the problems we
are dealing with in this thesis. The implementation is evaluated against
criteria stated earlier. The chapter also has discussion about the problems
that were encountered during the implementation. The last section tells
how well in our opinion the implementation fills our expectations from the
beginning of this project.

6.1 Evaluation against the criteria

This section looks into how well the implementation fills the criteria given in
the section 4.3. First is the same criteria that was discussed before and then
is the evaluation how well the implementation fills the criteria.

1. The transferred SSO session should continue to work on the target
platform as it has worked on the original platform. In other words, the
transferred SSO session should stay the same and no new SSO session
should be created on the basis of the transferred information.

The experiments showed that the same SSO session continues on the
Shibboleth SSO system with the transferred cookies. The SPs replay
attack protection that checks the IP the cookies come from prevents
the migrated authentication session from working. In these cases, the
migrated IdP session created new SP sessions.

2. Transferred cookies should be identical enough to work on the target
platform.

ol

CHAPTER 6. EVALUATION

In section 4.1.1 we decided not to transfer all the values and attributes
of the cookies. Some attributes are assumed to be with certain values.
These assumptions of the attributes of the cookies were right in most
of the experimented systems. Only difference was discovered in the
testing with the Livejournal SP of OpenID. Livejournal sends the SP
authentications session through unprotected connections. The OpenlD
tests had to be done with the isSecure cookie attribute as false.

. The transfer should only affect the client side of the SSO session. No
changes or only minimum changes should be made on the SP or IdP
sides of the SSO system.

In general, the authentication session migration was possible without
changes to the server-side of the SSO system. The authentication cook-
ies were enough for the session migration and no other information
needed to be transferred. Migrating cookies does not need changes to
the server-side on normal SSO systems.

The session transfer on SPs of the Shibboleth systems did not work
because it has protection against replay attacks that send the authen-
tication session cookies from a different IP address. This protection
needs to be altered for the authentication session migration to work for
the SP. The migrated IdP session created a new SP session automati-
cally. The OpenlID SSO system used in the testing also had the same
protection but it had to be turned on separately by the user. Section
7.4 discusses about how the servers can distinguish replay attack from
a legally migrated session.

. The transfer should be faster and require less input from the user than
logging out and re-authenticating himself on the target platform the
conventional way.

Otherwise, the migration is faster than re-authentication on the mobile
device, but if many Bluetooth devices are in range the device and ser-
vice discovery of PyBluez may take a long time. The tests showed that
the PyBluez device and service discovery does the discovery at least
four times on windows machines. This is probably to make sure that
all services are discovered but can take a lot of time. The Maemo ver-
sion of PyBluez did the discovery only once. Searching for only services
on paired devices circumvents this problem.

The target platform choosing was done with a GUI which offers the
possible devices that have the authentication session migration proto-
type service. The GUI offers a fast way for the user to choose the target

02

CHAPTER 6. EVALUATION

device and prevents the session migration from transferring the session
information to a wrong recipient.

5. User should be able to continue his browser session from the same
location on the target platform. The whole internet session does not
need to be migrated, only the SSO authentication sessions.

Most browsers can be started with a command line command or a
shell script with a starting URL as a parameter. This was however
not possible in Fennec, but because only beta version was used the
functionality will perhaps be added to the final release version.

After the implementation and tests one more criteria came up. First is the
criteria, then the explanation of the criteria, and last how well the imple-
mentation fills the criteria.

1. The transfer should only move the authentication session information
from one device to another.

The aim is to migrate authentication sessions of different kinds of SSO
systems. All SSO systems do not use cookies for the session handling.
If a group of SSO authentication sessions are migrated, it is not efficient
to transfer other kinds of useless information with the migration and
may it may even be a security problem.

The filling of this criteria depends on the SSO systems practices on
what they store in the cookies. All cookie-based SSO systems do not
store the authentication session information to individual cookies with
no other information. The authentication session information cannot
be extracted from the cookies because the value of the cookies is en-
crypted. If the SSO system stores the authentication session informa-
tion in separate cookie, this criteria is filled.

6.2 Implementation problems

During the implementation of the SSO authentication session migration pro-
totype, some problems were encountered. The first choice as the program-
ming language, Java, was not suitable for the mobile device N810 internet
tablet. Later we decided to find out if it is possible to implement the au-
thentication session migration prototype to Nokia E90 Communicator that
uses Symbian operating system but the interface to the cookie manager com-
ponent that handles the cookies is not available for free. Also, the Fennec

93

CHAPTER 6. EVALUATION

beta version does not have all the same functionalities as the Firefox. Next
sections discuss more about these problems.

6.2.1 Programming language

The first choice was to use Java as the programming language for the Blue-
tooth cookie transfer application. Java is a common language for web ap-
plications and it has compatibility with most platforms. Though, it was not
possible to use Java: Java micro edition (JME) used usually on mobile en-
vironments is the only Java edition that has native support for Bluetooth.
Java standard edition (JSE) used in the desktop computer must use external
library for Bluetooth. N810 internet tablets operating system Maemo has
support for neither JME or JSE. It has its own project for Java called Jal-
imo [3|. Jalimo does not have a working Bluetooth library that would also
work in JSE. Thus, both platforms would use own libraries for the Bluetooth
implementation and the implementations would have to be different.

Python offers a better choice as the programming language with the PyBluez
library that handles Bluetooth. The change to Python did not cause any
major problems for the project. The Bluetooth transfer application is fairly
small and simple. Thus, no prior knowledge about Python was needed. The
change from Java to Python only wasted a days work.

6.2.2 Symbian

During the implementation, we decided to find out if it was possible to im-
plement the authentication session migration prototype on Nokia E90 Com-
municator that uses the Symbian operating system. Symbian offers a HTTP
connection package for the applications and thus handles the cookies for them
as mentioned in section 3.2.1. This is a different approach from the browser
handling the HT'TP connections and cookies.

Symbian controls the cookies with a cookie manager component that offers
an interface to operate the cookies. It is similar to the way the browsers
handle cookies. The cookie manager interface is not included in the software
developers kit (SDK) that is available free for Symbian developers. Thus, we
were not able to implement the authentication session migration prototype
this way.

The free SDK of Symbian has the possibility to extract the cookies from
the header collection of the HTTP session. The default web browser of E90

04

CHAPTER 6. EVALUATION

Communicator is called the Web Browser for S60. Extracting the HTTP
session from the Web Browser for S60 would give access to the cookies of the
session but the extraction is not possible in the browser. Thus, the cookies
extraction for the authentication session migration prototype is not possible
and this part of the prototype cannot be implemented on Symbian with these
tools.

The Symbian operating system has no support for PyBluez that is used on
the other devices for the implementation of the authentication session migra-
tion prototype. Symbian has its own library for the Bluetooth operations.
Authentication session migration prototype needs its own code for the cookie
information transfer on Symbian. Thus, we did not implement any parts of
the prototype on Nokia E90 Communicator.

6.2.3 Fennec

The Bluetooth server of the authentication session migration protocol starts
the web browser of the target device with the URL of the original devices
web browser. The beta version of Fennec does not have the functionality
to start the browser with the URL. The Mozilla community will probably
correct this problem to the final release version of Fennec because their goal
is to make Fennec work the same way as Firefox. The user has to browse to
the right page himself in the Fennec when using the authentication session
migration prototype.

6.3 Self evaluation

The beginning of the chapter 5 explains what was our expectations when we
started to do this thesis. We had no knowledge if the authentication session
migration was possible or how much changes would have to be made to the
SSO system to make it work. We thought that a self made dummy SSO
system would have to be made. The goal of the implementation was to prove
that SSO authentication sessions can be migrated to a different device.

The authentication session migration prototype transfers the authentication
session to a target device and the session continues without problems on the
new device. The prototype has been used to migrate sessions on existing
SSO systems successfully as described in section 5.3. Thus, compared to the
expectations the prototype is a success.

Bluetooth is a good method for the cookie information transfer. It is simple

95

CHAPTER 6. EVALUATION

to set up and use. All the devices in the implementation had Bluetooth
available easily. On the mobile devices, it was native and on desktop PC
a Bluetooth dongle provided the service. PyBluez is easy to use but a very
simple library for the Bluetooth protocols. On a bigger project, it is better to
use some other more complex library that gives more control to the developer.

The shortcoming of the prototype is that it works only on very specific plat-
forms. The prototype migrates only sessions from Firefox browser of PC
and from the Fennec browser of N810 Internet Tablet. The Mozilla-based
browsers are the only ones that gives access to the cookie handling to all
developers. The implementation to Symbian was not possible because we
only had access to the free SDK that does not contain the cookie manager
interface. The same situation was with the other browsers of PC. Further
work based on the prototype is needed to make it work on wider amount of
devices or a different approach such as use of a proxy can be taken. The use
of a proxy to migrate authentication sessions is discussed in the section 7.1.

26

Chapter 7

Discussion

The authentication session migration prototype was implemented on two
devices: a desktop computer, and an internet tablet. It is important to
discuss how the prototypes findings can be spread to a wider amount of
devices and platforms. The cookie extraction of the implementation was done
with a web browser extension. Other means to extract the cookie information
exist that do not have to be separately implemented on all different browsers.
These methods are discussed in section 7.1.

Another discussion point is how the authentication session migration can be
made to work on all the different cookie-based SSO systems. The authenti-
cation session cookies need to be identified before they can be migrated to
the target device. This is discussed in section 7.2.

The federated SSO systems have different means to identify which IdP the
user wants to use for authentication. Some systems store this information in
a cookie. Thus, to migrate the whole SSO sessions functionality this cookie
must also be identified and transferred. The identification of this cookie is
discussed in section 7.3.

Some SSO systems protect the authentication sessions by checking that the
cookies always come from the same IP address. This prevents the migrated
session from working. The SSO systems need a alternative solution for the
replay protection. The other solutions that exist for replay protection are
discussed in section 7.4.

The whole internet session stored in the browser can be migrated with the
authentication session migration. The section 7.5 tells what other data need
to be migrated with the authentication session information to transfer the
whole session of the internet browser. The section 7.6 shows what conse-

57

CHAPTER 7. DISCUSSION

quences arise when users and applications can access the cookies storages
on the computers. The last section 7.7 tells what has to be considered if a
application is developed based on the prototype implemented in this thesis.

7.1 Session transfer solutions

In general, user has three ways to migrate the authentication session: with
a client-side application, browsing through a proxy on the client’s machine
or by browsing through a proxy on a third-party machine. The client-side
application is usually a browser extension. The application handles the au-
thentication session extraction from the browser, the transportation of the
information, and the importation of the session data on the target platform.
Every different type of browser needs its own individual implementation of
the application.

The proxy on the client machine gives the session migration service to all the
browsers operating on the machine. Thus, the different browsers do not need
a different client application implementations. On the other hand, all the
different operating systems need their own implementations. The migration
itself between devices is similar to the client-side application. The proxy
handles the cookie extraction and importation of the session. Some operating
systems, such as Symbian and Mac OS, handle the HTTP connections for the
applications as discussed in the section 3.2.1. This approach offers the same
services and advantages as the proxy on the client machine for authentication
session migration.

Browsing through a third party proxy approach is independent from the
browsers and operating systems. The user browses through a proxy that is
on a third machine. The proxy monitors and stores the session information.
When the user changes device, the proxy adds the old session information to
the new HTTP connection. As the proxy is not under the user’s control, it
has to be trusted.

The implementation itself is easiest in the client-side application approach
because the components for cookie manipulation and HTTP connection han-
dling already exist. The problem with the cookie management components
is that all browsers do not give free access to them. Also, implementation
for different browsers has to be done individually.

The client-side proxy gives the implementation to all the applications work-
ing on the device. If the devices operating system handles the cookies, the
approach is as easy to implement as the client-side application approach. If

o8

CHAPTER 7. DISCUSSION

the operating system does not offer a cookie management component, the
client-side proxy has to be implemented the same way as the third-party
proxy.

The third-party proxy works for all devices that use the HT'TP protocol.
Thus, it is the most comprehensive approach of the three and needs only one
implementation for all devices. It is also the most complex to implement.
The proxy has to separate and store the cookies from HTTP headers. The
session stored in a proxy can be resumed from any device and at any time
after the original session has ended. The third-party proxy needs some sort
of authentication from the user to identify the session that belongs to him.

Implementations using these approaches exists for the web browser session
migration. Song et al. [46] describe a client-side implementation of a in-
ternet session migration application. The application takes a snapshot of
the internet session with a browser extension and stores it in a proxy. The
target device of the migration retrieves the session snapshot from the proxy.
Although the extraction of the session is client-based it still uses a proxy for
the transfer. The session extraction in the client is similar with the imple-
mentation in this thesis but the use of proxy adds complexity to the session
transfer. Also, taking the session snapshot requires more changes to the
browser than extracting just the cookies.

Adeyeye et al. [10] propose a client-side implementation that transfers the
session to the target device using session initiation protocol (SIP) [38]. The
transfer with STP is done through a proxy or straight to the target device. The
proxy is used to provide web browser registration and session data encryption.
The SIP protocol is imported as a Mozilla Framework XPCOMM component.
Thus, the implementation works only on Mozilla-based browsers just like the
implementation in this thesis. Importing the protocol stack to other browsers
is a more substantial task than just gaining access to the session cookies.

Canfora et al. [14] describe an implementation of proxy-based browser ses-
sion migration. The proxy stores and re-uses the user’s credentials used
in the web application authentications. Thus, the proxy also works as a
proxy-based pseudo SSO. Gaining access to the session stored in the proxy
requires authentication. Hsieh et al. [26] have also implemented proxy-based
implementation of the browser session migration. This implementation also
includes a small client-side application that can be used to extract the session
information that cannot be monitored with a proxy.

All the implementations that require an authentication to the proxy used in
the transfer are not suitable for the authentication session migration because
the authentication could as well be done in the SSO system. Also, all the

29

CHAPTER 7. DISCUSSION

implementation use internet for the session information transfer. This is more
vulnerable than the Bluetooth transfer because all the parts of the transfer
are not under the user’s control. SIP has the same vulnerabilities as a HT'TP
transfer [22|. Bluetooth restricts the area of the possible attacks.

7.2 Identifying the session cookies

Name and domain attributes distinguish the session cookies from other HT'TP
cookies. The session cookies cannot be identified by their values because the
values usually contain only the encrypted session identifier. Newer versions
of Shibboleth and OpenID use a default name on the session cookies that
can be used to identify the session cookies. The SSO servers do not force the
use of the default names. If a conflict arises in the network with the cookie
names, it is avoidable with a name change. Thus, the default name is not a
definite way to identify the session cookies.

The domain attribute contains the URL of the host of the cookie. If the
application knows the SSO systems servers, the domain name can be used to
distinguish the session cookies. Some Shibboleth IdP servers contain the IdP
letters in the address of the server. These IdP servers are thus identifiable
with these letters. The domain name identification identifies all the cookies of
the server and thus other cookies that are not authentication session cookies
are also included.

A combination of name and domain attributes identifies most of the session
cookies but it is not a sure way. The identification can distinguish cookies
that are not authentication session cookies or leave authentication session
cookies out of the identification. The session cookie identification needs a
coherent naming policy for the session cookies. Without a coherent policy,
the cookies cannot be distinguished from the other HT'TP cookies.

7.3 Identifying the IdP the user wants to use

Different cookie-based SSO systems SPs in different domains have no means
by themselves to know which IdP the user wants to use even if the user has
already authenticated himself to the SSO system in the IdP. The SSO system
can have a separate service to direct the user to the right IdP depending on
the users choice. This service stores the chosen IdP to a cookie for further
redirects to the IdP. The session migration application needs also to transfer

60

CHAPTER 7. DISCUSSION

this cookie to migrate all the SSO systems functionality. If the service is
not in use, the user has to provide the right IdP on every authentication to
different SPs.

Identifying the cookies that tell what IdP to use is as hard or harder as
identifying the session cookies. The IdP redirect cookies are persistent and
do not have to be transferred through secure connections.

7.4 Distinguishing transferred session from a
replay attack

Browsers have cookie handling vulnerability discussed in section 3.4 called the
cookie harvesting vulnerability that gives cookies to the wrong recipient. The
SSO session cookies can be harvested and used in a replay attack with this
vulnerability. Thus, the SSO servers need a protection method against cookie
use in replay attacks. If no protection is implemented, the authentication
session in SSO system can be captured. The usual way to protect the cookie
is to check that the cookies always come from the IP they were issued to.
This prevents the authentication session migration from working. Some other
way to protect the cookies has to be used.

First method to allow the cookies from different TP address but protect
against a replay attack is to record the allowed IP addresses of individual
users in a list in the SSO system. The SSO checks that the cookies come
from a safe IP address if the IP address of the user changes during a session.
This method needs additional management with the IP address lists. The
IP address of the user is not always the same on the same device. Thus in
some cases, a wide range of TP addresses would have to be accepted. Attacks
from within the range are possible.

Second method is to tie the cookies to the SSL session protecting the connec-
tion. A Secure Cookie Protocol introduces a protocol to attach the cookies to
the specific SSL session [30]. If the SSL session is migrated with the SSO au-
thentication session migration, the cookies can be tied to the SSL session and
the attacker would not be able to use the harvested cookies from a different
SSL connection.

61

CHAPTER 7. DISCUSSION

7.5 Migrating the whole internet session

The migration of only the authentication session is not practical in some
cases. The authentication session migration needs only to transfer the session
cookies. The whole internet session migration needs all the cookie data and
the browsing history. The cookies include both the session and persistent
cookies. Persistent cookies are stored in the file system either in one or
several files. Browsing history is usually also in a single file. The persistent
cookies and browsing history files are easy to import in to the browsers with
methods they offer. This way works in the client-side approach of the session
transfer implemented in this thesis. If the proxy approach is used the proxy
has to monitor the HTTP connections and store the information itself.

The amount of data in the whole internet session transfer is considerably
larger than the information for the authentication sessions transferred in
this thesis. We transfered the session authentication cookies as text strings
through a SPP connection. This way does not work with larger amounts of
data. The larger amounts are transferred in Bluetooth with OBEX. OBEX
is a file transfer protocol and transfers the files in binary format without
alterations. OBEX was not used in this thesis because a library implementing
OBEX in Python on all the platforms used in the thesis was not found.

7.6 Browsers and extensions with cookie han-
dling

The web server uses cookies for state handling of the HTTP connection.
Otherwise the HT'TP connection is stateless. The cookies are thus intended
for the web server and not the client. The start assumption is that the client
does not need access to the cookies as default. However, many users want
to save important cookies and delete the cookies that are used to track the
users browsing in the net. Thus, on some platforms it is possible for the users
to manipulate the cookies.

Allowing everyone to access the cookies also opens the door for malicious
attackers. An attacker can inject an application to the browser and access
the cookies. Even our implementation of the authentication session migration
prototype can be used as such injected program with some modifications.
The modified prototype could migrate the authentication session to a target
device without the user knowing it. The users must only install trusted
applications from the internet to prevent malicious attackers from gaining

62

CHAPTER 7. DISCUSSION

access to the web browser.

On some operating systems, such as Symbian and Mac OS, the operating
system handles the cookies. These operating systems offer a HTTP connec-
tion component for the applications. As HTTP is a standardised protocol, it
is same for all the browsers. It removes redundant work from all the browsers
but at the same time removes some flexibility. It is harder to use compo-
nents such as the cookies for tasks they are not planned to be used. On
the other hand, the implementation of cookies on different browsers have not
always strictly followed the official definitions. Placing the HTTP connec-
tion handling to the operating system forces all the applications to use that
implementation of HTTP. This forces the applications to use the correctly
implemented HTTP and protocols affiliated with it because sometimes the
applications do not implement HTTP as it is defined.

7.7 From prototype to real application

The implementation of this thesis is only a prototype for testing the authen-
tication session migration. If an application is done based on this prototype,
certain issues have to be considered. This section covers all the parts of the
prototype and discusses what have to be taken into account when developing
them.

The cookie extraction of the prototype works on Mozilla-based browsers Fire-
fox, and Fennec. It was not possible to do the prototype on other browsers
because access to the cookies was not possible with their free development
tools. Though, about third of the users in the internet browse with differ-
ent Firefox versions [9] and especially if Fennec becomes popular on mobile
devices, it is worthwhile to do the application just for Mozilla-based browsers.

Bluetooth is a viable solution for the information transfer between devices.
It offers flexibility with its different protocols. Also, security of the transfer
is good because all the parts of the transfer stay under the user’s control.
Bluetooth does not offer an official protocol stack but different manufacturers
have implemented their own protocol stacks. The Python library PyBluez
only supports Microsoft and Widcomm Bluetooth stacks on Windows and
Bluez stack on GNU/Linux. A usable application needs a better support
for different Bluetooth protocol stacks on different platforms. Also, C++
programming language is worth to consider instead of Python as it is native
programming language on many mobile devices.

Third part of the migration that has to be considered is the SSO systems. If

63

CHAPTER 7. DISCUSSION

the application can migrate authentication sessions from OpenlD and Shib-
boleth, it is probably enough because they seem to be the two most popular
SSO systems in web usage. The authentication sessions of the IdPs migrate
without problems. The problem with the SSO systems is the protection
against replay attacks on the SPs. The SP sessions are protected on Shib-
boleth by checking that the cookies always come from the same IP address.
This prevents the migrated SP session from working but the SSO system cre-
ates a new SP session with the migrated IdP session. Therefore, user usually
does not see any difference in the migration.

Biggest problem for the application is identifying the cookies that hold the
authentication session information. As section 7.2 tells, it is not possible to
know in a sure way what cookies hold the authentication session informa-
tion. Thus, the SSO systems should have a coherent naming policy for the
authentication session migration application to work automatically. Other
possibility is that the user tells the application which cookies have the ses-
sion information. Federated SSO system make it possible that user has his
identity information only on a few SSO IdPs. Therefore, the amount of the
information that would have to be gathered is fairly small. Problem with this
approach is that most users do not know anything about the session cookies.

64

Chapter 8

Conclusions

The implementation in this thesis is a client-side authentication session mi-
gration prototype. It migrates the authentication session of the SSO system
by transferring the session cookies corresponding to the authentication to
a target device. The migration works without problems if the SSO system
fulfills following conditions:

e The authentication session cookies must be distinguishable from other
cookies in the cookie storage.

e The SSO systems must not have a replay attack protection that rejects
the cookies from the different IP address than the originating device of
the migration.

The authentication session cookies need a standard for naming on all the
cookie-based SSO systems. Standard naming allows the cookie migration
application to know which cookies are the authentication session cookies
without knowing anything else about the SSO systems the user has authen-
tications on.

Using the HTTP state management protocol is not completely secure [35].
An attacker can harvest the cookies and use them in replay attacks. The
cookie-based SSO systems requires a way to protect itself against replay
attacks done with these harvested cookies. A common way to protect the
SSO system is to check that the cookies come from the same IP address they
were given. This prevents the migrated session from working. Some other
way to protect the SSO system must be deployed.

Three types of approaches exist for session transfer: client-based, server-
based, and proxy-based [26]. The client-based approach was used in this

65

CHAPTER 8. CONCLUSIONS

approach. It is the simplest approach to implement because the platform
provides mechanism for the cookie extraction and importation. Also, the
client-based approach does not need authentication to the systems same way
as an internet proxy does. The client-based approach needs different imple-
mentation for all the different browser clients.

The client-based authentication migration needs to access the session au-
thentication cookies. Not all the major web browsers and operating systems
that handle the HTTP connection give a free access to the cookie manipula-
tion interface. This prevents implementing the migration application easily
on all browsers and platforms. Allowing all developers access to the cookie
interfaces would make the development of an application that use the cook-
ies easier. Also, in general, if the cookies and other session information is
easy to access, migrating different sessions is easier in the modern mobile
environment.

The authentication session migration prototype implemented in this thesis
successfully transfers SSO authentication sessions between devices. Thus, the
approach used in the prototype is a viable alternative for the authentication
session migration. The prototype was tested with OpenID [5| and Shibboleth
[8] and it worked without problems.

8.1 Further work

The implementation in this thesis transfers only authentication sessions of
cookie-based SSO systems. SSO systems with other session management
approaches exist, for example the Higgins identity framework [2]. To be able
to transfer all the user’s authentication session, also the sessions of these SSO
systems using other approaches need to be migrated. Thus, further work on
different these different SSO systems is needed.

66

Bibliography

[1] Central Authentication Service (CAS). URL: http://www.jasig.org/cas,
referred December 15th, 2009.

[2] Higgins open source identity network. URL:
http://www.eclipse.org/higgins/, referred November 29th, 2009.

[3] Jalimo project (Java for Maemo). URL:
https://wiki.evolvis.org/jalimo/index.php/Main _Page, referred De-
cember 13th, 2009.

[4] Livejournal (OpenID service provider). URL:
http://www.livejournal.com, referred January 16th, 2010.

[5] OpenID (SSO system). URL: http://openid.net, referred January 15th,
2010.

[6] Pubcookie. URL: http://www.pubcookie.org/, referred December 15th,
2009.

[7] PyBluez (Bluetooth library for python). URL:
http://code.google.com /p/pyBluez/, referred December 15th, 2009.

[8] Shibboleth (SSO system). URL: http://shibboleth.internet2.edu/, re-
ferred January 15th, 2010.

[9] W3Counter - Global Web Stats. URL:
http: //www.w3counter.com/globalstats.php?year—=2010&month—1,
referred February 9th, 2010.

[10] ADEYEYE, M., VENTURA, N., AND HUMPHREY, D. A sip-based web
session migration service. In Proceedings of WEBIST 2009 - Poceedings
of the 5th International Conference on Web Information Systems and
Technologies (march 2009), pp. 39-46.

67

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BoLLA, R., RApuzzi, R., AND REPETTO, M. Handling mobility over
the network. In Proceedings of the 4th International Conference on Fu-
ture Internet Technologies (CFI t09) (2009), pp. 16-19.

BoLrA, R., RApuzzi, R., REPETTO, M., BARSOCCHI, P., CHESSA,
S., AND LENZI, S. Automatic multimedia session migration by means
of a context-aware mobility framework. In Proceedings of The 6th In-
ternational Conference on Mobile Technology, Application € Systems
(Mobility t09) (September 2009).

CANFORA, G., D1 SANTO, G., VENTURI, G., ZIMEO, E., AND ZITO,
M. V. Migrating web application sessions in mobile computing. In
Proceedings of WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web (may 2005), pp. 1166—
1167.

CANFORA, G., SANTO, G. D., VENTURI, G., ZIMEO, E., AND ZITO,
M. V. Proxy-based hand-off of web sessions for user mobility. In Pro-
ceedings of MobiQuitous 2005: Second Annual International Conference
on Mobile and Ubiquitous Systems: Network and Services (jul 2005),
pp. 363-372.

CARLSEN, U. Cryptographic protocol flaws. In Proceedings of IIIE
Computer Security Foundations Workshop VII (jun 1994), pp. 192-200.

CHALANDAR, M., DARVISH, P., AND RAHMANI, A. A centralized
cookie-based single sign-on in distributed systems. In Proceedings of

ITI 5th International Conference on Information and Communications
Technology (ICICT 2007) (Dec. 2007), pp. 163-165.

Cur, Y., NAHRSTEDT, K., AND XU, D. Seamless user-level handoff in
ubiquitous multimedia service delivery. Multimedia Tools and Applica-
tions 22, 2 (February 2004).

DE CLERCQ, J. Single sign-on architectures. In Proceedings of the In-
ternational Conference on Infrastructure Security (InfraSec ’02) (2002),
pp- 40-58.

DiErRKS, T., AND RESCORLA, E. RFC 5246: The Trans-
port Layer Security (TLS) Protocol Version 1.2, aug 2008. URL:
Http://tools.ietf.org/html/rfc5246, referred September 3rd, 2009.

Diniz, J. R. B., FERRAZ, C. A. G., AND MELO, H. An architecture of
services for session management and contents adaptation in ubiquitous

68

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[25]

[26]

27]

28]

[29]

[30]

medical environments. In Proceedings of the 2008 ACM symposium on
Applied computing (SAC t08) (2008).

Fu, K., Sit, E., SMITH, K., AND FEAMSTER, N. Dos and don’ts of
client authentication on the web. In Proceedings of the 10th conference
on USENIX Security Symposium (aug 2001), vol. 10, p. 19.

GENEIATAKIS, D., AND LAMBRINOUDAKIS, C. An ontology descrip-

tionfir sip security flaws. Computer Communications 30 (mar 2007),
1367-1374.

HAGER, C., AND MIDKIFF, S. An analysis of bluetooth security vul-

nerabilities. In Proceedings of IEEE Wireless Communications and Net-
working (WCNC 2003) (March 2003), vol. 3, pp. 1825-1831.

HARDY, G. The truth behind single sign-on. Information Security
Technical Report 1,2 (1996), 46-55.

HousLey, P., PorLk, W., ForD, W. aAND Soro, D. RFC
3280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL Profile), apr 2002. URL:
http://tools.ietf.org/html /rfc3280, referred December 20, 2009.

Hsien, M., WaANG, T., Tsa1, C., AND TSeENG, C. Stateful session
handoff for mobile www. Information Sciences 176, 9 (may 2006), 1241
1265.

KLINGENSTEIN, N.; AND CANTOR, S. NativeSPSessions, Jul 2009.
URL: https://spaces.internet2.edu/display /SHIB2 /NativeSPSessions,
referred Septemper 22nd, 2009.

KoPONEN, T., ERONEN, P., AND SARELA, M. Resilient connections
for ssh and tls. In Proceedings of USENIX 06 Annual Technical Con-
ference (may-june 2006).

KrisToL, D., AND MoNTULLI, .. RFC 2965: HTTP State Manage-
ment Mechanism, Oct 2000. URL: Http://tools.ietf.org/html/rfc2965,
referred June 29th, 2009.

Liu, A., KovaAcs, J., HUANG, C., AND GOUDA, M. A secure cookie

protocol. In Proceedings of International Conference on Computer Com-
munications and Networks (oct 2005), pp. 333—-338.

69

BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

MATE, S., CHANDRA, U., AND CURCIO, I. Movable-multimedia: ses-
sion mobility in ubiquitous computing ecosystem. In Proceedings of the

5th international conference on Mobile and ubiquitous multimedia (dec
2006), pp. 8-es.

MORGAN, P. nslFile (Morzilla extension reference), may 2009. URL:
https://developer.mozilla.org/en /nsIFile, referred December 15th, 2009.

NeEuMAN, C., YU, T., HARTMAN, S., AND RAEBURN, K. RFC 4120:
The Kerberos Network Authentication Service (V5), Jul 2005. URL:
Http://tools.ietf.org/html/rfc4120, referred August 11th, 2009.

PARK, J., AND Dicor, D. Wlan security: current and future. Internet
Computing, IEEE 7, 5 (Sept/Oct. 2003), 60-65.

PARK, J., AND SANDHU, R. Secure cookies on the web. Internet
Computing, IEEE /, 4 (Jul/Aug 2000), 36-44.

PARKER, T. Single sign-on systems-the technologies and the products.
In Proceedings of European Convention on Security and Detection (May
1995), pp. 151-155.

PASHALIDIS, A., AND MITCHELL, C. A taxonomy of single sign-on

systems. In Proceedings of 8th Australian on Information Security and
Privacy (ACISP 2003) (jul 2003), pp. 249-263.

ROSENBERG, J., SHULZRINNE, H., CAMARILLO, G., JOHNSTON,
A., PETERSON, J., SPARKS, R., HANDLEY, M., AND SCHOOLER,
E. RFC 3261: SIP: Session Initiation Protocol, jun 2002. URL:
http://tools.ietf.org/html /rfc3261, referred December 20, 2009.

SALOWEY, J., Zaou, H., ERONEN, P., AND TSCHOFENIG, H.
RFC4507: Transport Layer Security (TLS) Session Resumption without
Server-Side State, May 2006. URL: http://tools.ietf.org/html/rfc4507,
referred Oct 21st, 2009.

SAMAR, V. Single sign-on using cookies for web applications. In Pro-
ceedings of IEEFE 8th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE °99) (jun 1999),
pp- 158-163.

SHEPHERD, E. nsICookie (Mozilla extension reference), jul 2009.
URL: https://developer.mozilla.org/en/nsICookie, referred December
15th, 2009.

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

SHEPHERD, E. nsICookieManager (Mozilla extension reference), may
2009. URL: https://developer.mozilla.org/en/nsICookieManager, re-
ferred December 15th, 2009.

SHEPHERD, E. nsICookieManager2 (Mozilla extension reference), aug
2009. URL: https://developer.morzilla.org/en/nsICookieManager2, re-
ferred October 7th, 2009.

SHEPHERD, E., AND SMEDBERG, B. nsIProcess (Mozilla extension ref-
erence), may 2009. URL: https://developer.morzilla.org/en /nsIProcess,
referred December 15th, 2009.

SoNnG, H., CHu, H., IsLaM, N., KURAKAKE, S., AND KATAGIRI,
M. Browser state repository service. In Proceedings of the First In-
ternational Conference on Pervasive Computing (Pervasive '02) (2002),
pp- 253-266.

SONG, H., CHU, H., AND KURAKAKE, S. Browser session preservation
and migration. In Proceedings of Poster Session of WWW 2002 (may
2002), p. 2.

SULLIVAN, R. K. The case for federated identity. Network Security
2005, 9 (2005), 15-19.

SYVERSON, P. A taxonomy of replay attacks. In Proceedings of IEEE
Computer Security Foundations Workshop VII (jun 1994), pp. 131-136.

YE, R., CHAN, A., AND ZHU, F. Efficient cookie revocation for web
authentication. International Journal of Computer Science and Network

Security 7, 1 (jan 2007).

71

